#' Lisa's GEE Regression Table Reporting Function
#'
#' This function creates a nice looking table of regression results for a geeglm model.
#' Input either a geeglm object or dataframe, outcome variable, vector of covariates, id/cluster variable, correlation structure, model family, and type of analysis (univariate or multiple regression).
#' The function returns a dataframe of formatted regression results and prints the results table using kable or htmlTable.
#' @param fit geeglm model object [fit or family/covs/out/id/corstr are REQUIRED].
#' @param df Dataframe [fit or family/covs/out/id/corstr REQUIRED].
#' @param family Character. Model family name in quotes ("guassian", "binomial", "poisson") [fit or family/covs/out/id/corstr are REQUIRED].
#' @param covs Character. Vector of covariates to include in model [fit or family/covs/out/id/corstr are REQUIRED].
#' @param out Character. Outcome for regression model [fit or family/covs/out/id/corstr are REQUIRED].
#' @param id Character. Name of ID/cluster variable [fit or family/covs/out/id/corstr are REQUIRED].
#' @param corstr Character. Name of correlation structure. Default is "exch".
#' @param regtype Logical. Should the covariates be run separately ("uni") or together in a multiple regression model ("multi") [fit or family/covs/out/id/corstr are REQUIRED].
#' @param intercept Logical. If TRUE the intercept will be included in the table (muliple regression only). Default is FALSE.
#' @param refcat Logical. If TRUE the table will create a separate line for the reference category. Default is FALSE.
#' @param labels Character vector. Covariate labels in same order as covs. Default is NA (variable names are used).
#' @param overallp Logical. If TRUE, a likelihood ratio test pvalue will be calculated for each variable (via anova, Chisq test). Default is FALSE.
#' @param est.dec Numeric. Number of decimal places for estimates. Default is 2.
#' @param ci.dec Numeric. Number of decimal places for 95 percent confidence interval. Default is 2.
#' @param pval.dec Numeric. Number of decimal places for pvalues. Must be an integer from 1 to 4. Default is 3.
#' @param estname Character. Label for regression estimate. Default is NA (program will choose a reasonable name depending on model type).
#' @param exp Logical. Option to exponentiate coefficients and CI's. Default is NA (estimates exponentiated for binomial and poisson models by default).
#' @param color Character. Color to use for htmlTable striping. Default is "#EEEEEE" (light grey). Use "white" for no striping.
#' @param kable Logical. If TRUE, table will be formatted using the kable packge. Default is TRUE.
#' @param htmlTable Logical. If TRUE, the table will be printed using htmlTable. Default is FALSE.
#' @param title Character. Optional title above table. Default is "".
#' @param footer Logical. If TRUE, table will include a footnote with model details, nobs, R2. Default is TRUE.
#' @keywords glm table logistic poisson linear regression reporting
#' @importFrom geepack geeglm
#' @importFrom knitr kable
#' @importFrom htmlTable htmlTable
#' @export
nicegee <- function(fit = NA,
df = NA,
family = NA,
covs = NA,
out = NA,
id = NA,
corstr="exch",
regtype = "multi",
exp = NA,
estname = NA,
intercept = FALSE,
refcat = FALSE,
labels = NA,
overallp = FALSE,
est.dec = 2,
ci.dec = 2,
pval.dec = 3,
color = "#EEEEEE",
kable = TRUE,
htmlTable = FALSE,
title = "",
footer = TRUE){
# check user inputs -------------------------------------------------------
if (!is.na(fit[1])) regtype <- "multi"
try(if (is.na(fit[1]) & (is.na(regtype) | !(regtype %in% c("uni", "multi")))) stop("regtype must be uni or multi\n"))
if (is.na(fit[1])){
try(if (class(df) != "data.frame" | is.na(covs[1]) | is.na(out[1]) | is.na(family[1])) stop("must provide model object or dataframe + covariates + outcome + model family\n"))
## remove any covs that do not appear in dataset
covs2 <- covs[covs %in% names(df)]
if (length(covs2) != length(covs)) cat("Warning! Covariate(s) do not exist in dataset:", covs[!(covs %in% names(df))],"\n")
covs <- covs2
try(if (length(covs) == 0) stop("No valid covs\n"))
## check that outcome appears in dataset
out2 <- out[out %in% names(df)]
try(if (length(out2) != 1) stop("Outcome does not exist in dataset: ", out[!(out %in% names(df))],"\n"))
out <- out2
## check that id variable appears in dataset
id2 <- id[id %in% names(df)]
try(if (length(id2) != 1) stop("Cluster variable does not exist in dataset: ", id[!(id %in% names(df))],"\n"))
out <- out2
try(if (class(covs[1]) != "character") stop("covs must be a character vector\n"))
try(if (class(out[1]) != "character" | length(out) != 1) stop("out must be a single character string\n"))
try(if (class(family[1]) != "character" | !family %in% c("gaussian", "binomial", "Gamma", "poisson", "quasibinomial", "quasipoisson")) stop ("invalid family, must be: gaussian, binomial, Gamma, poisson, quasibinomial, quasipoisson\n"))
}
# make kable the default table format
if (!kable & !htmlTable) kable <- TRUE
# define formats and helper functions -------------------------------------
trim <- function(x) gsub("(^[[:space:]]+|[[:space:]]+$)", "", x)
simcap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2), sep="", collapse=" ")
}
esformat <- paste("%." , est.dec, "f", sep="")
ciformat <- paste("%." , ci.dec, "f", sep="")
pvformat <- paste("%." , pval.dec, "f", sep="")
### function to format p-values to specified decimal places
pvfun <- function(pvals){
pvals2 <- sprintf(pvformat, round(pvals, pval.dec))
if (pval.dec == 2) pvals2[pvals < 0.01 ] <- "< 0.01"
if (pval.dec == 3) pvals2[pvals < 0.001 ] <- "< 0.001"
if (pval.dec == 4) pvals2[pvals < 0.0001] <- "< 0.0001"
if (pval.dec == 2) pvals2[pvals > 0.99 ] <- "> 0.99"
if (pval.dec == 3) pvals2[pvals > 0.999 ] <- "> 0.999"
if (pval.dec == 4) pvals2[pvals > 0.9999] <- "> 0.9999"
if (htmlTable){
pvals2 <- gsub("<", "<", pvals2)
pvals2 <- gsub(">", ">", pvals2)
}
return(pvals2)
}
### function to format summary(geeglm) coef table
tblfun <- function(fit){
coef_tbl <- data.frame(summary(fit)$coef, stringsAsFactors = FALSE)
family <- summary(fit)$family["family"]
exp <- ifelse(is.na(exp) & family == "gaussian", FALSE, TRUE)
### if no estimate name is specified pick a reasonable name for each situation
if (!is.na(fit[1])) family <- summary(fit)$family[1]
if (is.na(estname) & family == "binomial" & exp == TRUE ) estname <- "OR"
if (is.na(estname) & family == "poisson" & exp == TRUE ) estname <- "RR"
if (is.na(estname) & family == "quasibinomial" & exp == TRUE ) estname <- "OR"
if (is.na(estname) & family == "quasipoisson" & exp == TRUE ) estname <- "RR"
if (is.na(estname) & family == "gaussian" & exp == TRUE ) estname <- "Ratio"
if (is.na(estname) & family == "quasibinomial" & exp == FALSE) estname <- "Estimate"
if (is.na(estname) & family == "quasipoisson" & exp == FALSE) estname <- "Estimate"
if (is.na(estname) & family == "binomial" & exp == FALSE) estname <- "Estimate"
if (is.na(estname) & family == "poisson" & exp == FALSE) estname <- "Estimate"
if (is.na(estname) & family == "gaussian" & exp == FALSE) estname <- "Difference"
coef_tbl$lower <- coef_tbl[,"Estimate"] - (qnorm(0.975)*coef_tbl[,"Std.err"])
coef_tbl$upper <- coef_tbl[,"Estimate"] + (qnorm(0.975)*coef_tbl[,"Std.err"])
if ( exp) coef_tbl$Estimate <- exp(summary(fit)$coef[,"Estimate"])
if (!exp) coef_tbl$Estimate <- summary(fit)$coef[,"Estimate"]
coef_tbl$Estimate <- sprintf(esformat, round(coef_tbl$Estimate, est.dec))
names(coef_tbl)[grepl("Est", names(coef_tbl))] <- estname
names(coef_tbl)[grepl("Pr" , names(coef_tbl))] <- "p_value"
### conf function formats confidence intervals
if (exp){
conf <- function(x){
paste("[",
sprintf(ciformat, round(exp(x), ci.dec)[1]), ", ",
sprintf(ciformat, round(exp(x), ci.dec)[2]) , "]", sep="")
}
}
if (!exp){
conf <- function(x){
paste("[",
sprintf(ciformat, round(x, ci.dec)[1]), ", ",
sprintf(ciformat, round(x, ci.dec)[2]) , "]", sep="")
}
}
cimat <- data.frame(coef_tbl[,c("lower", "upper")])
if (nrow(coef_tbl) == 1) coef_tbl$CI <- conf(t(cimat))
if (nrow(coef_tbl) > 1) coef_tbl$CI <- apply(cimat,1,conf)
coef_tbl$p_value <- pvfun(pvals = coef_tbl$p_value)
if (!overallp) {
dr1fit <- data.frame(summary(aov(fit))[[1]], stringsAsFactors = FALSE)
dr1fit$op_value <- NA
}
if ( overallp) {
dr1fit <- data.frame(summary(aov(fit))[[1]])
dr1fit$op_value <- pvfun(pvals = dr1fit[,names(dr1fit)[grepl("Pr", names(dr1fit))]])
}
dr1fit$varname <- trim(row.names(dr1fit))
dr1fit <- dr1fit[dr1fit$varname != "Residuals",]
blank <- dr1fit[1,]
blank[1,] <- rep(NA, ncol(blank))
row.names(blank) <- "(Intercept)"
blank$Df <- 1
dr1fit <- rbind(blank, dr1fit)
coef_tbl$coefname <- row.names(coef_tbl)
vars <- NULL
for (i in 1:nrow(dr1fit)){
vars <- c(vars, rep(dr1fit[i, "varname"], dr1fit[i,"Df"]))
}
### get variable classes
vtypes <- data.frame(attr(terms(fit), "dataClasses")[-1], stringsAsFactors = FALSE)
names(vtypes) <- "vtype"
vtypes$varname <- row.names(vtypes)
### get reference levels for factors
xlevs <- fit$xlevels
if (length(xlevs) > 0) {
refs <- data.frame(sapply(xlevs, function(x) simcap(x[1])))
names(refs) <- "ref"
refs$varname <- row.names(refs)
}
if (length(xlevs) == 0){
refs <- vtypes
names(refs) <- c("ref", "varname")
refs$ref <- NA
}
coef_tbl$varname <- vars
coef_tbl$order <- 1:nrow(coef_tbl)
coef_tbl2 <- merge(coef_tbl, dr1fit, by = "varname", all.x = TRUE, all.y = FALSE, sort = FALSE)
coef_tbl2 <- merge(coef_tbl2, refs, by = "varname", all.x = TRUE, all.y = FALSE, sort = FALSE)
coef_tbl2 <- merge(coef_tbl2, vtypes, by = "varname", all.x = TRUE, all.y = FALSE, sort = FALSE)
coef_tbl2$vtype[grepl(":",coef_tbl2$coefname)] <- "interaction"
coef_tbl2$levname <- NA
for (i in 1:nrow(coef_tbl2)){
coef_tbl2$levname[i] <- simcap(substring(coef_tbl2$coefname[i], nchar(coef_tbl2$varname[i]) + 1))
}
coef_tbl2$comp <- paste(coef_tbl2$levname, "vs.", coef_tbl2$ref)
coef_tbl2$comp[!(coef_tbl2$vtype %in% c("character", "factor"))] <- NA
# coef_tbl2$varname <- sapply(coef_tbl2$varname, function(x) simcap(x))
coef_tbl2 <- coef_tbl2[order(coef_tbl2$order), ]
coef_tbl2$vseq <- ave(coef_tbl2$order, coef_tbl2$varname, FUN = function(x) seq_along(x))
# create a duplicate row for header - just for factors
coef_tbl2 <- coef_tbl2[rep(seq_len(nrow(coef_tbl2)), each=2),]
coef_tbl2$dup <- 0
coef_tbl2$dup[grepl("\\.1$", row.names(coef_tbl2))] <- 1
coef_tbl2 <- subset(coef_tbl2, dup == 0 | (vtype %in% c("character", "factor", "interaction") & vseq == 1))
coef_tbl2 <- coef_tbl2[order(coef_tbl2$order, -coef_tbl2$dup),]
if (!intercept | regtype == "uni") coef_tbl2 <- subset(coef_tbl2, varname != "(Intercept)")
coef_tbl2$compref <- coef_tbl2$levname
coef_tbl2$compref[coef_tbl2$dup == 1] <- paste(as.character(coef_tbl2$ref[coef_tbl2$dup == 1]), "(Ref)")
coef_tbl2$compref[!(coef_tbl2$vtype %in% c("factor", "character"))] <- NA
coef_tbl2$comp[coef_tbl2$dup == 1] <- NA
coef_tbl2[coef_tbl2$dup == 1, estname ] <- NA
coef_tbl2[coef_tbl2$dup == 1, "CI" ] <- NA
coef_tbl2[coef_tbl2$dup == 1, "p_value"] <- NA
coef_tbl2[coef_tbl2$dup == 0 & !(coef_tbl2$vtype %in% c("numeric", "integer")), "op_value"] <- NA
coef_tbl2$order <- 1:nrow(coef_tbl2)
coef_tbl2$vseq <- ave(coef_tbl2$order, coef_tbl2$varname, FUN = function(x) seq_along(x))
coef_tbl2$vrows <- ave(coef_tbl2$order, coef_tbl2$varname, FUN = function(x) length(x))
coef_tbl2$varname[coef_tbl2$vseq > 1] <- NA
coef_tbl2$comp[coef_tbl2$dup == 0 & coef_tbl2$vtype == "interaction"] <- coef_tbl2$coefname[coef_tbl2$dup == 0 & coef_tbl2$vtype == "interaction"]
coef_tbl2$compref[coef_tbl2$dup == 0 & coef_tbl2$vtype == "interaction"] <- coef_tbl2$coefname[coef_tbl2$dup == 0 & coef_tbl2$vtype == "interaction"]
if ( refcat) coef_tbl3 <- coef_tbl2[,c("varname", "compref", estname, "CI", "p_value", "op_value")]
if (!refcat) coef_tbl3 <- coef_tbl2[,c("varname", "comp" , estname, "CI", "p_value", "op_value")]
vrows <- coef_tbl2$vrows[coef_tbl2$vseq == 1]
vnames <- coef_tbl3$varname[coef_tbl2$vseq == 1]
return(list("tbl" = coef_tbl3
,"vrows" = vrows
,"vnames" = vnames
,"estname" = estname
))
}
# Create multiple regression table ----------------------------------------
if (regtype == "multi") {
### if model is not provided, run the model
if (is.na(fit[1]) & sum(!is.na(covs) > 0) & !is.na(out) & !is.na(family) & !is.na(id)){
dfc <- df[complete.cases(df[,c(out, covs, id)]),]
dfc <- dfc[order(dfc[,id]),]
dfc$xxx_idc_xxx <- factor(dfc[,id])
for (q in 1:length(covs)){
if ("factor" %in% class(dfc[,covs[q]])) dfc[,covs[q]] <- droplevels(dfc[,covs[q]])
}
form <- as.formula(paste(out, "~", paste(covs, collapse = " + ")))
fit <- geeglm(form,
# id = dfc[,id],
# id = id,
id = xxx_idc_xxx,
data = dfc,
family = family,
corstr = corstr)
}
tbl <- tblfun(fit)
ftbl <- tbl[["tbl"]]
ftbl <- ftbl[,names(ftbl) != "varname"]
head <- c("Variable", estname, "95% CI", "Wald p-value", "LR p-value")
alignr <- "llccrr"
if (!overallp) {
ftbl <- ftbl[,names(ftbl) != "op_value"]
head <- c("Variable", estname, "95% CI", "p-value")
alignr <- "llccr"
}
vnames = tbl[["vnames"]]
if (!is.na(labels[1]) & sum(!is.na(labels)) == length(vnames)){
vnames <- labels
}
footnote <- paste("Family = ", simcap(as.character(fit$family[1])),
# " (",
# simcap(as.character(fit$family[2])),
", ",
"N obs = ", nobs(fit),
", ",
"N clusters = ", length(unique(fit$id)),
", ",
"Corstr = ", simcap(as.character(fit$corstr)),
sep= "")
if (!footer) footnote <- ""
if (htmlTable){
print(
htmlTable(ftbl,
header = head,
caption = title,
tfoot = footnote,
rnames = FALSE,
align = alignr,
rgroup = vnames,
n.rgroup = tbl[["vrows"]],
col.rgroup = c(color, "white"),
css.cell = "padding-left: 3em; padding-right: 1em;")
)
}
if (kable){
ftbl$comp <- as.character(ftbl$comp)
ftbl$comp[!is.na(ftbl$comp)] <- paste(" *", ftbl$comp[!is.na(ftbl$comp)])
ftbl$comp[is.na(ftbl$comp)] <- vnames
names(ftbl) <- head
if (title != "") footnote <- paste(title, "; ", footnote, sep="")
print(
kable(ftbl,
row.names = FALSE,
caption = footnote,
align = substr(alignr, 2, nchar(alignr)))
)
}
}
# Create univariate regression table --------------------------------------
if (regtype == "uni") {
tbl_uni <- NULL
vrows_uni <- NULL
vnames_uni <- NULL
nobs_uni <- NULL
for (j in 1:length(covs)){
dfj <- df[complete.cases(df[,c(out, covs[j], id)]),]
# dfj[,id] <- factor(dfj[,id])
dfj <- dfj[order(dfj[,id]),]
dfj$xxx_idj_xxx <- factor(dfj[,id])
if ("factor" %in% class(dfj[,covs[j]])) dfj[,covs[j]] <- droplevels(dfj[,covs[j]])
formj <- as.formula(paste(out, "~", covs[j]))
fitj <- geeglm(formj,
# id = dfj[,id],
# id = id,
id = xxx_idj_xxx,
data = dfj,
family = family,
corstr = corstr)
tblj <- tblfun(fitj)
tbl_uni <- rbind(tbl_uni , tblj[["tbl"]])
vrows_uni <- c(vrows_uni , tblj[["vrows"]])
vnames_uni <- c(vnames_uni, tblj[["vnames"]])
nobs_uni <- c(nobs_uni, paste("(N = ", nobs(fitj), ", N clusters = ", length(unique(fitj$id)), ")", sep=""))
}
ftbl <- tbl_uni
ftbl <- ftbl[,names(ftbl) != "varname"]
estname <- tblj[["estname"]]
head <- c("Variable", estname, "95% CI", "Wald p-value", "LR p-value")
alignr <- "llccrr"
if (!overallp) {
ftbl <- ftbl[,names(ftbl) != "op_value"]
head <- c("Variable", estname, "95% CI", "p-value")
alignr <- "llccr"
}
if (!is.na(labels[1]) & sum(!is.na(labels)) == length(vnames_uni)){
vnames_uni <- labels
}
footnote <- paste("Family = ", simcap(as.character(fitj$family[1])),
", ",
"Corstr = ", simcap(as.character(fitj$corstr)),
sep= "")
if (!footer) footnote <- ""
vnames_uni <- paste(vnames_uni, nobs_uni)
if (htmlTable){
print(
htmlTable(ftbl,
header = head,
caption = title,
tfoot = footnote,
rnames = FALSE,
align = alignr,
rgroup = vnames_uni,
n.rgroup = vrows_uni,
col.rgroup = c(color, "white"),
css.cell = "padding-left: 3em; padding-right: 1em;")
)
}
if (kable){
ftbl$comp <- as.character(ftbl$comp)
ftbl$comp[!is.na(ftbl$comp)] <- paste(" *", ftbl$comp[!is.na(ftbl$comp)])
ftbl$comp[is.na(ftbl$comp)] <- vnames_uni
names(ftbl) <- head
if (title != "") footnote <- paste(title, "; ", footnote, sep="")
print(
kable(ftbl,
row.names = FALSE,
caption = footnote,
align = substr(alignr, 2, nchar(alignr)),
format = "markdown")
)
}
}
return(ftbl)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.