Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
Setting: You have a set of vertical machining centres VC560 (ma). The main process parameters are:\
cutting speed (vc (m/min)), feed rate (fz (mm/tooth)), depth of cut (ap (mm)).\
The process is running with the following parameters:\
```{r, echo=FALSE}
tabl <- "
| Process parameter | vc (m/min) | fz (mm/tooth) | ap (mm) |
|-------------------|:----------:|:-------------:|:-------:|
| Min. value | 140 | 0.2 | 0.82 |
| Current process | 165 | 0.3 | 2.00 |
| Max. value | 190 | 0.4 | 3.18 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
The target is to have a minimal roughness (ra (μm)).\
You will be asked to write down several plans in the following.\
These plans have all the same structure. The file starts with the Matrikelnumber.\
This row is followed by a row with the column names: ma, vc, fz, ap.\
In the following rows follows the plan with the levels. There are always 4 columns.\
Tasks:\
In the first step one machine is characterized on the current process\
# Set Matrikelnumber
```{r}
matrikelnumber=1
```
# 1. Characterize the current roughness with a relative precision of 5 perc. Do this in two steps. Setup appropriate test plans, analyse them, and check, if the target relative precision is achieved.
## create test plan for screening and read back results
```{r}
ma=c(1)
vc=c(165)
fz=c(0.3)
ap=c(2.0)
nr=10
plan1=expand.grid(ma,vc,fz,ap)
plan1=do.call("rbind", replicate(nr, plan1, simplify=F))
names(plan1)<- c("ma","vc","fz","ap") # to names the variables
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
```
### Write test plan1
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat1)
```
## estimate number of experiments for relative precision of 5 perc.
```{r}
me=mean(dat1$ra)
sde=sd(dat1$ra)
np=ceiling((sde/(0.05*me))^2)
```
estimated number of experiments for relative precision of <=5perc is `r np`.
## create second test plan with estimated number of replications
```{r}
ma=c(1)
vc=c(165)
fz=c(0.3)
ap=c(2.0)
nr=np
plan2=expand.grid(ma,vc,fz,ap)
plan2=do.call("rbind", replicate(nr, plan2, simplify=F))
names(plan2)<- c("ma","vc","fz","ap") # to names the variables
set.seed(1234) # set seed for random number generator
plan2=plan2[order(sample(1:nrow(plan2))),] # randomize design
```
### Write test plan1
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat2)
```
## test if relative precision was achieved
```{r}
me=mean(dat2$ra)
sde=sd(dat2$ra)
pr=sde/me/sqrt(length(dat2$ra))
```
The achieved relative precision is `r pr`.
# 2. Calculate Characteristic numbers
## 2. a,b,c) what is a typical value? (2 values), how far is the data typically spreading? (2 values),is the data symmetrically distributed? (2 values)
### mean & median (robust), standard deviation & MAD (robust), skewness & medcouple (robust)
```{r}
summary <- dat2 perc>perc group_by(ma)perc>perc summarise( mean = mean(ra), median = median(ra), std_dev = sd(ra), MAD =mad(ra), skewness=skewness(ra), medcouple= mc(ra))
summary perc>perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc>perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc>perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
a) mean and median are nearly equal, i.e. the difference is small compared to the standard deviation / MAD\
b) standard deviation and MAD are nearly equal.\
c) skewness and medcouple are nearly zero.
# 3. Characterise the data further and interpret results
## 3.)a) Generate four plots
### scatter plot
```{r}
ggplot(data=dat2,mapping = aes(x=time,y=ra)) + geom_point()
```
Distribution looks unsuspicious. There doesnt seem to be any time drift.
### density plot to get an overview of the dataset
```{r}
den1=densityPlot(dat2$ra,main = "data", xlab = "line",ylab = "value")
lines(seq(min(dat2$ra),max(dat2$ra),0.01),dnorm(seq(min(dat2$ra),max(dat2$ra),0.01),mean = mean(dat2$ra),sd=sd(dat2$ra)),col="red",lwd = 2,lty = 'dotted')
```
Data looks normal dsitributed.
### box-notch plot to check for outliers
```{r}
boxplot(dat2$ra,notch = T)
```
there might be one outlier.
### qq-plot to check for normality and outliers
```{r}
ggqqplot(dat2$ra, main = "dat2$ra")
```
Data looks close to normal distributed and no outliers are seen.
## 3.)b) Do two statistical hypothesis tests
### test for normality
Check for normality of dataset with shapiro-wilk test\
H~0~ the dataset is normal distributed.\
set significance level: $\alpha =5\perc$\
```{r}
shapiro.test(dat2$ra)
```
p-value is > previously set alpha value of 0.05, so H~0~ cant be rejected. The dataset seems to be normal distributed.
### check for outliers
H~0~ there are no outliers.\
set significance level: $\alpha =5\perc$\
```{r}
rosnerTest(dat2$ra,k=3)$n.outliers
```
There dont seem to be any outliers.
### alternative: test if distribution is stationary
KPSS test: H~0~ Distribution is stationary\
The significance level is set to $\alpha = 0.05$
```{r}
kpss.test(dat2$ra)
```
H~0~ cannot to be rejected since ($p>\alpha$), i.e. it seems to be stationary.
# 4.) Write down the essential steps you always have to take for any statistical test / hypothesis testing.
1. set H~0~ (Null Hypothesis)
2. set significance level $\alpha$
3. choose appropriate statistics
4. analyze data
- if necessary test the made assumptions for the test, e.g. test for normal distribution, equal variance
- run the hypothesis test itself
5. interpret result mathematically
6. express results in plain language understandable for non-statisticians
# 5.) Next the machine is characterized in the allowed parameter range. Assume that the performance (ra) is linear. Set up a test plan for the characterisation of the machine (ma) 1. (Do 10 replicates for each level.)
## create test plan for screening with 2 levels for linear regression model with 10 replicates
```{r}
ma=c(1)
vc=c(140,190)
fz=c(0.2,0.4)
ap=c(0.82,3.18)
nr=10
plan3=expand.grid(ma,vc,fz,ap)
plan3=do.call("rbind", replicate(nr, plan3, simplify=F))
names(plan3)<- c("ma","vc","fz","ap") # to names the variables
set.seed(1234) # set seed for random number generator
plan3=plan3[order(sample(1:nrow(plan3))),] # randomize design
```
### Write test plan3
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan3,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat3=read.delim("plan3_res.csv",header = T,dec=".", sep = ";")
dat3=transform(dat3,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat3)
```
# 6.) What are four characteristics of a good DOE test plan?
-plan is balanced
-plan is orthogonal
-blocking for countering known nuisance factors
-randomization for conutering unknown nuisance factors
-sufficient replications (if required power is defined)
# 7.) And set up a linear model for the full parameter range (5.). Shortly discuss the result.
H~01~ vc has no effect on ra \
H~02~ fz has no effect on ra \
H~03~ ap has no effect on ra \
H~04~ vc*fz interaction has no effect on ra\
H~05~ vc*ap interaction has no effect on ra\
H~06~ fz*ap interaction has no effect on ra\
H~07~ vc* fz*ap interaction has no effect on ra\
set significant level: $\alpha = 5\perc$
```{r}
model1=lm(ra~vc*fz*ap,data = dat3)
summary(model1)
```
$p<\alpha$ for H~01~, H~03~, H~04~, H~05~, H~07~ therefore these Hypothesis have to the rejected.\
The rest of the hypothesis cannot be rejected.
## find minimum model that performs just as well as full model and compare models
```{r}
reducedModel<-stepAIC(model1,k=log(nrow(dat3)),direction = "both")
summary(reducedModel)
```
the reduced model removes the interaction vc:fz:ap. Other than that it is the same as the full model
## compare full model with reduced model with anova
H~0~: The reduced model performs as well as the full model\
significance level alpha=0.05\
```{r}
anova(model1,reducedModel)
```
p-value is > previously set alpha value -> the models perform the same.
# 8.) Extra point: Visualize the results of the full model. (2 plots)
## Effect plot
```{r}
MEPlot(model1)
```
The largest effect is by fz.\
It is followed by vc.\
Only a marginal effect is due to ap.\
## Interaction plot
```{r}
IAPlot(model1)
```
There is a small interactions between all factors.\
# 9.) Extra point: Test the three assumptions of the full linear model. (1 plot and 1 test for each assumption)
## Test the normality of the residuals.
### Do a qq-plot
```{r}
ggqqplot(model1$residuals)
```
Residuals seem to be normal distributed.
### Test normality
H~0~ Data are normal distributed.\
significance level: $\alpha=5\perc$
```{r}
shapiro.test(model1$residuals)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals seem to be normal distributed.\
## Test the homogeneity of the residuals.\
### Do a scatter plot
```{r}
plot(model1$residuals)
```
The residuals look homogeneous.
### do hypothesis test
H~0~ residuals are homogeneous distributed\
significance level: $\alpha=5\perc$
```{r}
ncvTest(model1)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are homogeneous.\
## Look for leverage points outliers
### Calculate the critical Cooks distance.
```{r}
cd1c=4/length(model1$residuals)
cd1=abs(cooks.distance(model1))
subset(cd1, cd1 > cd1c)
```
There might be some high leverage points.
### do InfluenceIndexPlot
```{r}
influenceIndexPlot(model1, vars=c("Cook", "hat"),id=list(n=3))
```
There might be some high leverage outliers.
# 10.) Extra points: Set up a testing plan to be able to compare the machines 1 and 2 over the whole range. (Do 10 replicates for each level)
## Generate a third test plan for screening both machines.
```{r}
ma=c(1,2)
vc=c(140,190)
fz=c(0.2,0.4)
ap=c(0.82,3.18)
nr=10
plan4=expand.grid(ma,vc,fz,ap)
plan4=do.call("rbind", replicate(nr, plan4, simplify=F))
names(plan4)<- c("ma","vc","fz","ap") # to names the variables
set.seed(1234) # set seed for random number generator
plan4=plan4[order(sample(1:nrow(plan4))),] # randomize design
```
## Write test plan4
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan4,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
# 11.) Extra points: Compare the performance of the two machines
## Read data from plan4 with both machines
```{r}
dat4=read.delim("plan4_res.csv",header = T,dec=".", sep = ";")
dat4=transform(dat4,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat4)
```
## Set up a model to compare two machines.
H~00~ ma has not effect \
H~01~ vc has no effect \
H~02~ fz has no effect \
H~03~ ap has no effect \
H~04~ vc*fz interaction has no effect\
H~05~ vc*ap interaction has no effect\
H~06~ pc*ap interaction has no effect\
H~07~ vc* fz*ap interaction has no effect\
set significant level: $\alpha = 5\perc$
```{r}
model2=lm(ra~ma+vc*fz*ap,data = dat4)
summary(model2)
```
$p>\alpha$ for H~00~, H~01~, H~05~, H~06~, H~07~ therefore these Hypotheses cannot be rejected.\
The rest of the hypothesis have to be rejected.\
Thus the two machines have a same performance.
# 12.) Extra points: Calculate the number of replications that would be needed to resolve the smallest main effect still with a 95perc certainty. (You should take data only from one machine.)
```{r}
# take the smallest effect as a reference.
deltas = (mean(filter(dat3, ma==1 & vc == 140)$ra) - mean(filter(dat3, ma==1 & vc == 190)$ra)) / sd(filter(dat3, ma==1)$ra)
sig=0.05
nff=size.anova("axbxc",a=2,b=2,c=2,n=NULL,alpha = 0.05,beta = 0.05,d=deltas,cases = "maximin")
```
One would need `r nff` experiments.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.