Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
###########10#
Your task is to optimize a minimum quantity lubrication (MQL) process on a turning machine with\
respect to the roughness (ra). You have four factors that you want to take into account: cutting\
speed (c), feed rate (f), depth of cut (d) and the nozzle diameter for the MQL.\
The current operation parameters are c=200 m/min, f= 0.15 mm/rev, d=0.8 mm, n = 4 mm\
```{r, echo=FALSE}
tabl <- "
| Parameter | min. val.| max. val.|
|-------------------------|:--------:|:--------:|
| Cutting speed: c (m/min)| 50 | 450 |
| Feed rate: f (mm/rev) | 0.01 | 0.29 |
| Depth of cut: d (mm) | 0.1 | 1.7 |
| Nozzle diameter: n (mm) | 2 | 6 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
You will be asked to write down several plans in the following. These plans have all the same\
structure. The file starts with the Matrikelnumber. This row is followed by a row with the column\
names: c, f, d, n. In the next rows follows the plan with its levels. There are always 4 columns.\
## 10.1 - Screening Model without interactions
Set up a first screening plan around the current parameter, to get an estimate about the machine\
performance. For this choose a resolution that assumes that there are no interactions and take\
the level range to be below 30proz of the full range. (Because you know that nonlinear behaviour\
could occur.) And evaluate the results of the screening with an appropriate model. (Do not\
validate model assumptions.)\
## 10.2 - Screening Model with two-fold-interactions
After having this first overview set up a second plan with an appropriate resolution, (which?),
that considers also two, fold interactions. (But, is still linear.) And evaluate the results of the
screening with an appropriate model. (1 Model, 3 Plots) (Do not validate model assumptions.)
## 10.3 - Now set of a sequence of plans and try to find the optimum performance (smallest Ra).
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## 10.1 - Screening Model without interactions
Set up a first screening plan around the current parameter, to get an estimate about the machine\
performance. For this choose a resolution that assumes that there are no interactions and take\
the level range to be below 30proz of the full range. (Because you know that nonlinear behaviour\
could occur.) And evaluate the results of the screening with an appropriate model. (Do not\
validate model assumptions.)\
### decide necessary number of experiments
resolution=3 as interactions are not of importance
```{r warning=F, message=F, error = T}
nex=nrow(FrF2(resolution = 3, nfactors=4,clear=TRUE, res3=TRUE))
nex
```
The number of experiments is `r nex`.
### Generate test plan
Generate a fractional factorial plan.
set factors for screening so that level range is below 30proz of the full range -> min. level= 0.8*current optimum, max.level=1.2*current optimum
```{r warning=F, message=F, error = T}
nr=1 # number of replications
plan1=FrF2(nruns=nex,nfactors=4,replication=nr,factor.names=list(c=c(200*.8,200*1.2),f=c(0.15*.8,0.15*1.2),d=c(0.8*.8,0.8*1.2),n=c(0.8*4,1.2*4)),randomize = T)
plan1
```
Show the aliasing
```{r}
aliasprint(plan1)
```
two-fold interactions are confounded as expected.
### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
dat1 = read.delim("plan1_res.csv", header = TRUE,sep = ";", dec = ".")
head(dat1)
```
#### first glance at the data
##### Check class of variables
```{r}
map_df(dat1, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
##### check for NA values
```{r}
dat1 proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
##### Scatter Plot
```{r fig.height=9}
dat1 proz>proz ggplot(data=.,mapping = aes(x=time,y=ra)) + geom_point() + ggtitle("Scatterplot")
```
The data show no suspicious elements in the scatterplot. There might be time drift.
H~0~ Distribution is stationary\
The significance level is set to $\alpha = 5\proz$
```{r warning=F}
summary_kpss <- dat1 proz>proz summarise(kpss_p=kpss.test(ra)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
Data seem to be stationary.
Eliminate time as variable since no time drift was seen in KPSS-Test, so the reduced model does not require the time.
```{r}
dat1<-dat1[-1]
```
##### Visualize data
```{r message=F}
ggpairs(dat1,lower = list(continuous = wrap("smooth", alpha = 0.3, size=0.1)))
```
ra seems to have the most relevant correlation with c followed by f. The factors don't seem to correlate with each other.
### Set up a linear model for screening
H~01~: c has no effect\
H~02~: f has no effect\
H~03~: d has no effect\
H~04~: n has no effect\
significance level $\alpha=0.05$\
```{r warning=F, message=F, error = T}
mod1=lm(ra~.,data=dat1) # linear model
summary(mod1)
```
c and f seem to be significant.\
check if a reduced model is appropriate with BIC.
```{r}
modBIC1<-stepAIC(mod1,k=log(nrow(dat1)),direction = "both",trace = 0)
summary(modBIC1)
```
BIC removes factor n, as it doesn't seem to be significant for the model.
#### check if factor d is significant, or the model can be reduced further
H~01~: c has no effect\
H~02~: f has no effect\
significance level $\alpha=0.05$\
```{r warning=F, message=F, error = T}
mod1r=lm(ra~c+f,data=dat1) # linear model
summary(mod1r)
```
$p<\alpha$ of H~01~ and H~02~ cannot be rejected.\
##### compare models with anova
H~0~ models are equally fine.
significance level $\alpha=0.05$\
```{r warning=F, message=F, error = T}
anova(modBIC1,mod1r)
```
$\because p<\alpha \Rightarrow$, I can't reject H~0~.\
The models seem to be equally fine. But we keep model with factor d, as adj.r.squared is higher than reduced model -> final model for first screening is modBIC1.
#### visualize effects
```{r warning=F, message=F, error = T}
MEPlot(mod1)
```
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## 10.2 - Screening Model with two-fold-interactions
After having this first overview set up a second plan with an appropriate resolution, (which?),
that considers also two, fold interactions. (But, is still linear.) And evaluate the results of the
screening with an appropriate model. (1 Model, 3 Plots) (Do not validate model assumptions.)
### determine necessary number of experiments for model with two-fold-interaction but linear model (2 levels suffice)
```{r warning=F, message=F, error = T}
nex2=nrow(FrF2(resolution = 5, nfactors=4,clear=TRUE, res3=TRUE))
nex2
```
The number of experiments is `r nex2`.
### Generate Plan
Generate a fractional factorial plan.
```{r warning=F, message=F, error = T}
nr=1 # number of replications
plan2=FrF2(nruns=nex2,nfactors=4,replication=nr,factor.names=list(c=c(200*.8,200*1.2),f=c(0.15*.8,0.15*1.2),d=c(0.8*.8,0.8*1.2),n=c(0.8*4,1.2*4)),randomize = T)
```
Show the aliasing
```{r}
aliasprint(plan2)
plan2=as.data.frame(plan2)
plan2=plan2[-5] # there is a last block column that has to be eliminated
plan2
```
There doesn't seem to be any aliasing.
### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
dat2 = read.delim("plan2_res.csv", header = TRUE,sep = ";", dec = ".")
datatable(dat2)
```
#### first glance at the data
##### Check class of variables
```{r}
map_df(dat2, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
##### check if there are NA values
```{r}
dat2 proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
##### Scatter Plot
```{r fig.height=9}
dat2 proz>proz ggplot(data=.,mapping = aes(x=time,y=ra)) + geom_point() + ggtitle("Scatterplot")
```
The data show no suspicious elements in the scatterplot. There might be slight time drift.
##### KPSs-Test
H~0~ Distribution is stationary\
The significance level is set to $\alpha = 5\proz$
```{r warning=F}
summary_kpss <- dat2 proz>proz summarise(kpss_p=kpss.test(ra)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
Data seems to be stationary.
Eliminate time as variable since no time drift was seen initially, so the reduced model does not require the time
```{r}
dat2<-dat2[-1]
```
##### Visualize data
```{r message=F}
ggpairs(dat2,lower = list(continuous = wrap("smooth", alpha = 0.3, size=0.1)))
```
c seems to be relevant, f seems relevant but less so. d and n could be irrelevant.
### Set up a linear model
H~01~: c has no effect\
H~02~: f has no effect\
H~03~: d has no effect\
H~04~: n has no effect\
H~05~: cf has no effect\
H~06~: cd has no effect\
H~07~: cn has no effect\
H~08~: fd has no effect\
H~09~: fn has no effect\
H~010~: dn has no effect\
significance level $\alpha=0.05$\
```{r warning=F, message=F, error = T}
mod2=lm(ra~.^2,data=dat2) # linear model
summary(mod2)
```
c, f, and interaction c:d seem to be most significant. But all p-values are > alpha -> all initial null-hypothesis can't be rejected.
#### visualize main effects
```{r warning=F, message=F, error = T}
MEPlot(mod2)
```
c and f seem to be most significant.
#### visualize interactions
```{r warning=F, message=F, error = T}
IAPlot(mod2)
```
all factors seem to have at least slight interactions, except interaction f:n.
#### pareto plot
```{r}
library(pid)
paretoPlot(mod2, xlab="Effect name", ylab="Magnitude of effect")
```
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## 10.3 - Now set of a sequence of plans and try to find the optimum performance (smallest Ra).
Generate fractional factorial plan with more replications for optimization
```{r warning=F, message=F, error = T}
nr=3 # number of replications
plan2a=FrF2(nruns=nex2,nfactors=4,replication=nr,factor.names=list(c=c(200*.8,200*1.2),f=c(0.15*.8,0.15*1.2),d=c(0.8*.8,0.8*1.2),n=c(0.8*4,1.2*5)),randomize = T)
```
Show the aliasing
```{r}
aliasprint(plan2a)
plan2a=as.data.frame(plan2a)
plan2a=plan2a[-5] # there is a last block column that has to be eliminated
```
There doesn't seem to be any aliasing.
### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan2a.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2a,file="plan2a.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
dat2a = read.delim("plan2a_res.csv", header = TRUE,sep = ";", dec = ".")
head(dat2)
```
#### Have first glance the data
##### Check class of variables
```{r}
map_df(dat2a, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
##### check if there is an NA for any machine
```{r}
dat2a proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
##### Scatter Plot
```{r fig.height=9}
dat2a proz>proz ggplot(data=.,mapping = aes(x=time,y=ra)) + geom_point() + ggtitle("Scatterplot")
```
The data show no suspicious elements in the scatterplot. There doesn't seem to be any time drift..
H~0~ Distribution is stationary\
The significance level is set to $\alpha = 5\proz$
```{r warning=F}
summary_kpss <- dat2a proz>proz summarise(kpss_p=kpss.test(ra)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
Data seems to be stationary.
Eliminate time as variable since no time drift was seen initially, so the reduced model does not require the time
```{r}
dat2a<-dat2a[-1]
```
##### Visualize data
```{r message=F}
ggpairs(dat2a,lower = list(continuous = wrap("smooth", alpha = 0.3, size=0.1)))
```
c and f seem to be relevant. But d and n could also be relevant.
### Set up a linear model
H~01~: c has no effect\
H~02~: f has no effect\
H~03~: d has no effect\
H~04~: n has no effect\
H~05~: cf has no effect\
H~06~: cd has no effect\
H~07~: cn has no effect\
H~08~: fd has no effect\
H~09~: fn has no effect\
H~010~: dn has no effect\
H~011~: cfd has no effect\
H~012~: cfn has no effect\
H~013~: cdf has no effect\
H~014~: fdn has no effect\
H~015~: cfdn has no effect\
significance level $\alpha=0.05$\
```{r warning=F, message=F, error = T}
mod2a=lm(ra~.^2,data=dat2a) # linear model
summary(mod2a)
```
$p>\alpha \forall H_0$ except H~01~ therefore no factor seems to make a significant effect except factor c.\
#### visualize effects
```{r warning=F, message=F, error = T}
MEPlot(mod2a)
```
all effects seem to have a main effect on ra.
#### visualize interactions
```{r warning=F, message=F, error = T}
IAPlot(mod2a)
```
all factors seem to have at least slight interactions.
check if a reduced model is appropriate with BIC.
```{r}
mod2ar <- stepAIC(mod2a,k=log(nrow(dat2a)),direction = "both",trace = 0)
summary(mod2ar)
```
reduced model from BIC removes all interactions except d:n
### verify performance of reduced model
H~0~ both models have the same quality.\
significance level $\alpha=0.05$\
```{r}
anova(mod2a,mod2ar)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Both models seem to perform equally
## Find Optimum with rsm
### First run
#### Generate coded data set
```{r warning=F, message=F, error = T}
do1<-dat2a
opt_x1 <- 200 #current opt param. stated in exercise of factor 1
opt_x2 <- 0.15 #current opt param. stated in exercise of factor 2
opt_x3 <- 0.8 #current opt param. stated in exercise of factor 3
opt_x4 <- 4 #current opt param. stated in exercise of factor 4
co1=list(x1 ~ (c - opt_x1)/(opt_x1*(1-0.8)), x2 ~ (f - opt_x2)/(opt_x2*(1-0.8)), x3 ~ (d - opt_x3)/(opt_x3*(1-0.8)), x4 ~ (n -opt_x4)/(opt_x4*(1-0.8))) #(orig - center) / divisor
do1c <- coded.data(do1, formulas = co1)
do1c
```
#### Set up a response surface model
```{r warning=F, message=F, error = T}
mo1=rsm(ra~FO(x1,x2,x3,x4)+TWI(x1,x2,x3,x4),data=do1c) # linear model
summary(mo1)
```
#### Plotting results
```{r warning=F, message=F, error = T}
par(mfrow = c(2,3))
contour(mo1, ~ x1 + x2 + x3 + x4,image = TRUE)
```
#### Get the direction of steepest descent and create test plan with points in distance steps of 0.5
```{r warning=F, message=F, error = T}
plans1=steepest(mo1,dist=seq(0,4,.5),descent = T) #descent=T for minimum search
plans1=plans1[-(1:6)] #remove unnecessary columns (keep only c,f,d,n columns)
plans1=plans1[-(5:6)]
nr=3
plans1=do.call("rbind", replicate(nr, plans1, simplify=F))
plans2=steepest(mo1,dist=seq(0,4,.5),descent = T) #descent=T for minimum search
plans2
```
#### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plano1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plans1,file="plano1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
#### Read data from test plan with steepest descent
```{r warning=F, message=F, error = T}
dos1 = read.delim("plano1_res.csv", header = TRUE,sep = ";", dec = ".")
head(dos1)
```
#### compare steepest descent model with data to see where they deviate
```{r warning=F, message=F, error = T, fig.width=12}
dos1t=dos1[-1] # first remove time column
dos1v=cbind(rep("measured",nrow(dos1t)),dos1t) # add a name column to measurements
colnames(dos1v)<-c("data","c","f","d","n","ra")
plans1=steepest(mo1,dist=seq(0,4,.5),descent = T)
plans1=plans1[-(1:6)] # extract from the model, what is of interest
plans1=plans1[-(5)] # extract from the model, what is of interest
plans1=cbind(rep("model",nrow(plans1)),plans1) # add a name column to steepest decent model
colnames(plans1)<-c("data","c","f","d","n","ra")
dos1v=rbind(dos1v,plans1) # combine model and measurement to one data set
ggline(data=dos1v, x = "c",y="ra", ylab = "ra", add = "mean_sd", color = "data", palette = "jco")
```
The steepest decent and the data start to deviate at about c=276
##### new starting point
```{r warning=F, message=F, error = T}
newstart1=plans1[,-1][6,] #remove first column (data) with -1 and extract 6th row with c=~276 as new startpoint
newstart1=plans1[,-1][6,]
newstart1
```
### Second run
#### set up a central-composite design around new start point
```{r warning=F, message=F, error = T}
co2=list(x1 ~ (c - newstart1$c)/70, x2 ~ (f - newstart1$f)/0.07, x3 ~ (d-newstart1$d)/0.16, x4 ~ (n-newstart1$n)/.8) #(orig - center) / divisor, erstellt ccd um startpunkt z.b. für c: max(c)=startpunkt+70, min(c)=startpunkt-70
plan2=decode.data(ccd(4, n0 = 1,alpha = "rotatable", inscribed = TRUE, coding = co2)) #n0=1=1 centerpoint
plan2=plan2[-(1:2)]
plan2=plan2[-5]
nr=3
plan2=do.call("rbind", replicate(nr, plan2, simplify=F))
plan2=plan2[order(sample(1:nrow(plan2))),] # randomize design
```
#### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plano2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2,file="plano2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
#### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
do2 = read.delim("plano2_res.csv", header = TRUE,sep = ";", dec = ".")
head(do2)
do2=do2[-1]
```
#### Generated coded data set
```{r warning=F, message=F, error = T}
do2c <- coded.data(do2, formulas = co2)
```
#### Set up a response surface model
```{r warning=F, message=F, error = T}
mo2=rsm(ra~SO(x1,x2,x3,x4),data=do2c) # square model
summary(mo2)
```
#### Plotting results
```{r warning=F, message=F, error = T}
par(mfrow = c(2,3))
contour(mo2, ~ x1 + x2 + x3 + x4,image = TRUE)
```
##### Get the direction of steepest descent with smaller distance steps 0.3
```{r warning=F, message=F, error = T}
plans2=steepest(mo2,dist=seq(0,2.1,.3),descent = T)
plans2=plans2[-(1:6)]
plans2=plans2[-(5:6)]
nr=3
plans2=do.call("rbind", replicate(nr, plans2, simplify=F))
```
#### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plano3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plans2,file="plano3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
#### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
dos2 = read.delim("plano3_res.csv", header = TRUE,sep = ";", dec = ".")
head(dos2)
```
#### compare model with data
```{r warning=F, message=F, error = T, fig.width=15,fig.height=6}
dos2t=dos2[-1] # first remove time column
dos2v=cbind(rep("measured",nrow(dos2t)),dos2t) # add a name column to measurements
colnames(dos2v)<-c("data","c","f","d","n","ra")
plans2=steepest(mo2,dist=seq(0,2.1,.3),descent = T)
plans2=plans2[-(1:6)] # extract from the model, what is of interest
plans2=plans2[-(5)] # extract from the model, what is of interest
plans2=cbind(rep("model",nrow(plans2)),plans2) # add a name column to steepest decent model
colnames(plans2)<-c("data","c","f","d","n","ra")
dos2v=rbind(dos2v,plans2) # combine model and measurement to one data set
ggline(data=dos2v, x = "c",y="ra", ylab = "ra", add = "mean_sd", color = "data", palette = "jco")
```
The smallest value is reached for 283.38.
##### new starting point
```{r warning=F, message=F, error = T}
newstart2=plans2[,-1][8,]
rbind(newstart1,newstart2)
```
f seems to reach its minimum value
#### Third run
##### set up a central-composite designs
```{r warning=F, message=F, error = T}
co3=list(x1 ~ (c - newstart2$c)/70, x2 ~ (f - newstart2$f)/0.01, x3 ~ (d-newstart2$d)/0.16,x4~(n-newstart2$n)/.4)
plan3=decode.data(ccd(4, n0 = 1,alpha = "rotatable", inscribed = TRUE, coding = co3))
plan3=plan3[-(1:2)]
plan3=plan3[-5]
nr=3
plan3=do.call("rbind", replicate(nr, plan3, simplify=F))
```
##### Write test plan to file
```{r warning=F, message=F, error = T}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plano4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plang3,file="plano4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
##### Read data
Read data and have a first glance at them. (1st plot)
```{r warning=F, message=F, error = T}
do3 = read.delim("plano4_res.csv", header = TRUE,sep = ";", dec = ".")
head(do3)
do3=do3[-1]
```
##### Generate coded data set
```{r warning=F, message=F, error = T}
do3c <- coded.data(do3, formulas = co3)
```
##### Set up a response surface model
```{r warning=F, message=F, error = T}
mo3=rsm(ra~SO(x1,x2,x3,x4),data=do3c) # linear model
summary(mo3)
```
##### Plotting results
```{r warning=F, message=F, error = T}
par(mfrow = c(2,3))
contour(mo3, ~ x1 + x2 + x3 + x4 ,image = TRUE)
```
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.