Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
#################TEX####
Setting: You have a set of vertical machining centres VC560 (ma). The main process parameters are:\
cutting speed (vc (m/min)), feed rate (fz (mm/tooth)), depth of cut (ap (mm)).\
The process is running with the following parameters:\
```{r, echo=FALSE}
tabl <- "
| Process parameter | vc (m/min) | fz (mm/tooth) | ap (mm) |
|-------------------|:----------:|:-------------:|:-------:|
| Min. value | 140 | 0.2 | 0.82 |
| Current process | 165 | 0.3 | 2.00 |
| Max. value | 190 | 0.4 | 3.18 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
The target is to have a minimal roughness (ra (μm)).\
You will be asked to write down several plans in the following.\
These plans have all the same structure. The file starts with the Matrikelnumber.\
This row is followed by a row with the column names: ma, vc, fz, ap.\
In the following rows follows the plan with the levels. There are always 4 columns.\
In the first step one machine is characterized on the current process\
# 1. Characterize the current roughness with a relative precision of 5 perc. Do this in two steps.
Setup appropriate test plans, analyse them, and check, if the target relative precision is achieved.
# 2. Calculate Characteristic numbers
## 2. a,b,c) what is a typical value? (2 values), how far is the data typically spreading? (2 values),is the data symmetrically distributed? (2 values)
# 3. Characterise the data further and interpret results
## 3.)a) Generate four plots
## 3.)b) Do two statistical hypothesis tests
# 4.) Write down the essential steps you always have to take for any statistical test / hypothesis testing.
# 5.) Next the machine is characterized in the allowed parameter range. Assume that the performance (ra) is linear.
Set up a test plan for the characterisation of the machine (ma) 1. (Do 10 replicates for each level.)
# 6.) What are four characteristics of a good DOE test plan?
# 7.) And set up a linear model for the full parameter range (5.). Shortly discuss the result.
# 8.) Extra point: Visualize the results of the full model. (2 plots)
# 9.) Extra point: Test the three assumptions of the full linear model. (1 plot and 1 test for each assumption)
# 10.) Extra points: Set up a testing plan to be able to compare the machines 1 and 2 over the whole range. (Do 10 replicates for each level)
# 11.) Extra points: Compare the performance of the two machines
# 12.) Extra points: Calculate the number of replications that would be needed to resolve the smallest main effect still with a 95perc certainty. (You should take data only from one machine.)
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#################7####
two machines (ma) that have two control parameters (turning speed (ts), feederate (fr))
and you are interested in the roughness (ra) of your parts. The turning speed can be varied between
100 to 8000 rpm and feedrate from 0.001 to 0.01 mm/U, but you are only interested in the range: ts
4000 to 6000 rpm and fr 0.001 to 0.003 mm/U.
# 7.1
Characterize the first machine (1) to get a first impression on the machine performance. To get
the data set up a testing plan to do the screening (Write the plan to a csv file that has your
Matrikelnummer prior to the plan, followed by the variable names and then the levels of your
plan. The plan should have 3 columns (ma,ts,fr)). And then determine the corresponding linear
model and check, if it might be reduced.
# 7.2
Determine the number of experiments, if you want to right with your model to 99proz. And write a
second plan to compare the two machines. (Write the plan to a csv file that has your
Matrikelnummer prior to the plan, followed by the variable names and then the levels of your
plan. The plan should have 3 columns (ma,ts,fr)). And then analyse the result with an appropriate
model and check all the assumption
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
############8#
new machine for your company. You have five factors that can be manipulated between 0
and 2. And you assume that interactions between two factors can be relevant. However, you are sure
that three factor interaction do not play any role. You are asked to run a minimum of tests for the
start, but to have at least 3 replications
## 8.1.1 What is the right resolution for this problem?
5 factors that can be manipulated. Two-fold interactions are relevant, three-fold interactions are not relevant
-> resolution should be at least 5, because with a resolution of 4 still the twofold interactions are confounded (2*2=4).
## 8.1.2 How many experiments do you need?
With a resolution of 5 and 5 factors with 2 levels, the necessary number of runs is 2^(5-1)=16.
## 8.1.3 Set up a test plan to investigate the machine and write the plan to a csv file that has your Matrikelnummer prior to the plan.
## 8.1.5 Analyse the new performance data. (1 model) -> linear model
## 8.1.6 Find the smallest reasonable model
## 8.1.7 Verify that this smallest reduced model is sufficient with a second method (ANOVA)
## 8.1.8 Estimate the number of experiments to have errors below 1proz
## OPTIONAL: What happens when the resolution is too low?
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
##########9##
found a new chemical that precipitated at the end of the reaction. For the next reaction you
have to dissolve it. You decide to use mixtures of three different organic chemicals: Butanone,
Toluene, and Hexane. To figure which is best you always work with 100 µl solvent volume in which
you try to dissolve as much as possible. After thorough mixing you centrifuge down the undissolved
chemical, remove the solvent and evaporate the solvent in a small dish with known weight. After all
this you weight the amount of the new chemical that was dissolved.
## 9.1 Set up an experimental design to determine the best mixture. Write the plan to a csv file that has your Matrikelnummer prior to the plan.
## 9.2 Analyse the results. Set up a model and if necessary set up another plan for generating new data. (Iterate the process until you are satisfied with your result/optimization.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
########10##
Your task is to optimize a minimum quantity lubrication (MQL) process on a turning machine with\
respect to the roughness (ra). You have four factors that you want to take into account: cutting\
speed (c), feed rate (f), depth of cut (d) and the nozzle diameter for the MQL.\
The current operation parameters are c=200 m/min, f= 0.15 mm/rev, d=0.8 mm, n = 4 mm\
```{r, echo=FALSE}
tabl <- "
| Parameter | min. val.| max. val.|
|-------------------------|:--------:|:--------:|
| Cutting speed: c (m/min)| 50 | 450 |
| Feed rate: f (mm/rev) | 0.01 | 0.29 |
| Depth of cut: d (mm) | 0.1 | 1.7 |
| Nozzle diameter: n (mm) | 2 | 6 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
You will be asked to write down several plans in the following. These plans have all the same\
structure. The file starts with the Matrikelnumber. This row is followed by a row with the column\
names: c, f, d, n. In the next rows follows the plan with its levels. There are always 4 columns.\
## 10.1 - Screening Model without interactions
Set up a first screening plan around the current parameter, to get an estimate about the machine\
performance. For this choose a resolution that assumes that there are no interactions and take\
the level range to be below 30proz of the full range. (Because you know that nonlinear behaviour\
could occur.) And evaluate the results of the screening with an appropriate model. (Do not\
validate model assumptions.)\
## 10.2 - Screening Model with two-fold-interactions
After having this first overview set up a second plan with an appropriate resolution, (which?),
that considers also two, fold interactions. (But, is still linear.) And evaluate the results of the
screening with an appropriate model. (1 Model, 3 Plots) (Do not validate model assumptions.)
## 10.3 - Now set of a sequence of plans and try to find the optimum performance (smallest Ra).
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
Def:
confidence interval - a range of values so defined that there is a specified probability that the value of a parameter lies within it
confounding/aliasing:
Aliasing occurs in fract. fact. designs because the design does not include all of the combinations of factor levels.
For example, if factor A is confounded with the 3-way interaction BCD, then the estimated effect for A is the sum
of the effect of A and the effect of BCD. You cannot determine whether a significant effect is because of A,
because of BCD, or because of a combination of both
resolution - tells you how badly the design is confounded. Decides over ability to separate main effects and interactions from one another, low resolution leads to aliasing of factors/interactions.
fixed/random factor:
Two basic types of factors exist in the analysis of experiments: fixed and random.
Unlike a fixed factor, in which all levels of interest have been measured,
a random factor is one for which only a selection of all possible levels of a factor has been measured for analysis
res:
3: no interactions estimable, main effects confounded with two-way-ia
4: 2-way interactions aliased with each other -> no interactions estimable, better than res. 3 for main effects
5: three-way-ias confounded with two-way-ias
Typical approach in DoE
1. Recognition of the problem
2. Selection of the response variable (What do we want to
measure? And how will we do this?) (dependent variable)
3. Choice of factors, levels and ranges (What do we want to alter
in the experiments in which steps over which range?)
(independent variable)
4. Choice of experimental design
5. Running experiments
6. Statistical analysis of the collected data
7. Conclusion
8. Confirmation with repeated experiments
9. Recommendations
Characterizing Data
1. Read and check data
1. Check for NA, if there are NAs decide what to do with them
2. Check variable classes and change if necessary
1. categorical variables: “ftc”, factor
2. count variables: “int”, integer
3. (continuous) numerical variables: “dbl”, numeric
2. Calculate characteristic numbers and compare them to appropriate references. The
scale is often given by the corresponding error.
1. Mean and Median (to get the “most representative”/ “average”)
2. Standard deviation and MAD (to get the “typical width”)
3. Skewness and Medcouple (to see if the data are symmetrically distributed)
4. Kurtosis
3. Investigate data further
1. Is there drift?
1. V: Scatter plot; H: KSPP test
2. Are there autocorrelations or oscillations?
1. V: Autocorrelation plot; H: Durbin-Watson-Test, V: Spectral analysis
3. How are the data distributed?
1. V: Density plot / Histogram
4. Are data normal distributed?
1. V: QQ-Plot; H: Shapiro Wilk test
5. Are there outlier?
1. V: Box-Notch-Plot; H: Rosner Outlier Test (Generalized ESD)
# 4.) Write down the essential steps you always have to take for any statistical test / hypothesis testing.
1. state H~0~ (Null Hypothesis) and alternative
2. set significance level $\alpha$
3. choose appropriate statistics/distribution
4. analyze data (p-value)
- if necessary test the made assumptions for the test, e.g. test for normal distribution, equal variance
- run the hypothesis test itself
5. interpret result mathematically compare p-value to alpha
6. express results in plain language understandable for non-statisticians
7. Visualize results
Compare Groups of Data
1. Read and check data
1. Check for NA, if there are NAs decide what to do with them
2. Check variable classes
1. categorical variables: “ftc”, factor
2. count variables: “int”, integer
3. (continuous) numerical variables: “dbl”, numeric
3. Grouping variable has to be a categorical variable (“factor”)
4. Dependent variable is numeric (?)
2. State hypothesis and significance level
3. Check Assumptions
1. Are data normal distributed? (if not non-parametric test)
2. Are variances equal? (if no and only to groups Welch test)
4. Run ANOVA
5. Write mathematical interpretation
6. Write interpretation in common language
7. Visualize data, e.g. use Box-Notch-Plot
Linear Regression of Data
1. Get a first overview:
1. Check that all variables have the appropriate type, e.g. numeric, factor, …
2. Do a scatter plot to check, if a linear regression is reasonable
2. Do the linear regression (R: lm)
3. Check (adjusted) r2, F-value, p-values (how good is the fit?)
4. Visualize the results of the fit. (if possible overlay data with fit)
5. Test assumptions:
1. Test normal distribution of residuals (i.e. R: QQ-plot of residuals and
sharpiro.test(model$residuals) )
2. Check for Homoscedasticity (homogeneity of residuals) (i.e. spreadLevelPlot
(alternative: residual or standard. residuals vs fitted data)
and run a Non-constant Variance Score Test R: ncvTest())
3. Check for (high leverage) outliers (i.e. R: plot: stand. residuals vs
fitted data, Cooks distance vs data and vs leverage, and compare Cooks
distance to critical Cooks distance, … )
4. Check for autocorrelation (dependencies) of the residuals with the DurbinWatson test (R: durbinWatsonTest(model)) and autocorrelation plot (R: acf)
5. In case of Multivariant Regression check for Multicollinearity (R: vif(model),
critical values above 4 and a correlation plot R: ggpairs(data))
6. For more complex models check with BIC (or AIC) and/or ANOVA, if a reduced model
would do the same (better) job
Process of gaining knowledge in empirical science
1. Formulation of the problem / Defining objectives / State Hypothesis
-On what will be measured?
(Identifying experimental units)
-What will be measured?
(depended variable which will be evaluated for effects or models)
-What shall be the outcome?
(first overview? model? model validation? optimisation?)
-Which factors does the outcome depend on?
(independent variables: factors to be changed, nuisance factors, …)
2. Fixing the precession requirements
3. Selecting the statistical model (for planning and analysis)
4. Construction of the (optimal) design
5. Performing experiments
6. Statistical analysis
7. Visualize the results
8. Interpreting results
Quality factors of good experimental designs
• Factors are independent -> avoiding Multicollinearity
• Orthogonality -> Maximize the information gathered, e.g. factorial designs
• Balanced -> Avoiding Simpsons Paradox
• Randomized -> To address unknown nuisance factors like drift
• Blocked -> Known nuisance factors are blocked out
• Replication fit to the anticipated statistical power of the model
• Resolution fits to the anticipated degrees of interaction of factors
• Rotatable, especially for optimization via response surface designs
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.