Description Usage Arguments Details Author(s) See Also Examples
Computes the (optionally centered and/or absolute) sample moment of a certain order.
1 |
x |
a numeric vector containing the values whose moment is to be computed. |
order |
order of the moment to be computed, the default is to compute the first moment, i.e., the mean. |
center |
a logical value indicating whether centered moments are to be computed. |
absolute |
a logical value indicating whether absolute moments are to be computed. |
na.rm |
a logical value indicating whether |
n |
a numeric vector containing the values whose moment is to be computed. |
d |
Effect size (Cohens d) - difference between the means divided by the pooled standard deviation |
sig.level |
a logical value indicating whether centered moments are to be computed. |
power |
Power of test (1 minus Type II error probability) |
type |
Type of t test : one- two- or paired-samples |
alternative |
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "greater" or "less" |
When center
and absolute
are both FALSE
, the
moment is simply sum(x ^ order) length(x) Exactly one of the parameters u,v,f2,power and sig.level must be passed as NULL, and that parameter is determined from the others. Notice that the last one has non-NULL default so NULL must be explicitly passed if you want to compute it.
.
Kurt Hornik and Friedrich Leisch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 | x <- rnorm(100)
## Compute the mean
moment(x)
## Compute the 2nd centered moment (!= var)
moment(x, order=2, center=TRUE)
## Compute the 3rd absolute centered moment
moment(x, order=3, center=TRUE, absolute=TRUE)
## Not run:
###########1?
## Generate Data
Task:\
- You have seven machines for which you want to find out what they do. Write a test plan into a file
(suggested replicates: 300).\
- The file starts with the Matrikelnumber. This row is followed by a row with names with 1 column.
Names: ma. In the following rows follows the plan with the machines to be tested. There is always 1
column.\
- Set up a test plan to investigate the machines and write the plan to a csv file.
{r}
ma=seq(1,7) # number of machines tested
nr=300 # number of replicates
plan1=expand.grid(ma) # generate a base (matrix with 7 rows with values 1 to 7)
plan1=do.call("rbind", replicate(nr, plan1, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1=as.data.frame(plan1) # make sure plan1 is dataframe
names(plan1)<- c("ma")
{r}
#alternative test plan
plan1 <- tibble(ma = 1:7)
#replicate 300x
plan1 perc > perc slice(rep(1:n(), each = 300)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read test plan with results
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
## characteristic values
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( mean = mean(val), median = median(val), std_dev = sd(val), MAD =mad(val), skewness=skewness(val),medcouple= mc(val), kurtosis= kurtosis(val),min=min(val),q25=quantile(val,0.25),q75=quantile(val,0.75),max=max(val))
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
- mean values seem to be very similar except for machine 6, the same applies for the standard deviation.\
- Machine 6 has a much lower mean and standard deviation.\
- Comparing the MAD with the standard deviation, there seems to be a larger difference for machine 6, the MAD is much lower than the standard deviation, so there seem to be some outliers.\
- Skewness is near zero for machines 2,3 and 4 and machines 1,5,6 and 7 seem to be skewed.\
- Comparing the medcouple (robust) with the skewness, the medcouple is closer to zero for all machines.\
- Machine 1 and 6 still seem to be slightly skewed.\
- Kurtosis shows a very high value for machine 6, as already expected from the standard deviation, the distribution seems to be peaky.\
- Judging by Kurtosis, machines 3 and 4 seem to be close to a normal distribution.
## visualize data
### Scatterplot
{r fig.height=9}
plots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
p = ggplot(data=filter(dat1,ma==i),aes(x=time,y=val)) + geom_point() + ggtitle(paste("ma ",i)) + geom_smooth(method="auto", level=0.95)
plots[[i]] <- p
}
# display the scatterplots
gridExtra::grid.arrange(grobs=plots,ncol=2)
- Machine 4 seems to have some positive drift over time.\
- Machines 1, 3, 5, 6 ,7 seem to have some outliers but no discernable drift.
### Density +Historgram + "theo. Dist."
{r fig.height=9}
dplots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
dp = ggplot(data=filter(dat1,ma==i),aes(x=val))+geom_histogram(aes(y=..density..), binwidth=0.15,colour="black", fill="white")+geom_density() + ggtitle(paste("ma ",i)) + geom_rug(alpha = 1/5)
dplots[[i]] <- dp
}
# display the density plots
gridExtra::grid.arrange(grobs=dplots,ncol=2)
- Machine 2 seems to be the sum of two distributions.\
- Machines 1 and 7 seem to be skewed.\
- Machine 6 is has a high peak and low standard deviation.
### Box-Plot
{r}
ggplot(data=dat1, aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
- Machine 1,5 and 7 seem to have outliers. Machine 2 has a wide distribution (because it is sum of two distributions).\
- Machine 6 has a very low standard deviation and much lower mean than the other data sets.
### Q-Q-Plot
{r fig.height=9}
qqplots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
qqp = ggqqplot(data=filter(dat1,ma==i), x = "val") + ggtitle(paste("ma ",i))
qqplots[[i]] <- qqp
}
# display the density plots
gridExtra::grid.arrange(grobs=qqplots,ncol=2)
- Machines 1,2,5,6 and 7 are not normal distributed.\
- Machine 4 might not be normal distributed.
## Statistical tests
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(val, family="bcPower")$lambda)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
- normality: H~0~ has to be rejected for machine 1,2,5,6 and 7 ($p<alpha$) and cannot be rejected for 3,4. Thus 3 and 4 could be normal distributed.\
- stationary: H~0~ has to be rejected for machine 4 ($p<alpha$) and cannot be rejected for the rest. Thus all machines except for machine 4 could be stationary.\
- outliers: Machines 1, 5, 6, 7 seem to have outliers\
- box cox: necessary power for transformation is about -2.1 for machine 1, -0.77 for machine 5, 0.55 for machine 6. and 3.2 for machine 7.
#############2?
#############2?
Task:\
- You have eight machines (ma) for which you want to find out what they do. All machines are of the
same kind and are supposed to do the very same, but the first four are of one brand (?? ? {1,2,3,4})
and the other four are of the second brand (?? ? {5,6,7,8}).\
- According to the different tasks write test plans into files.\
- The files all start with the Matrikelnumber.\
- This row is followed by a row with names with 1 column. Names: ma.\
- In the following rows follows the plan with the machines to be tested.\
- There is always 1 column. \
- Set up a test plan to investigate the machines and write the plan to a csv file.\
### Set up test plan
{r}
#alternative test plan
ma <- seq(1:8)
plan1 <- tibble(ma = ma)
#replicate
plan1 perc > perc slice(rep(1:n(), each = 100)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
### read test plan with results
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
### Characterize all machines individually with the appropriate characteristic numbers, graphs and statistical tests. (100 replications should be appropriate.)
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( mean = mean(val), median = median(val), std_dev = sd(val), MAD =mad(val), skewness=skewness(val),medcouple= mc(val), kurtosis= kurtosis(val),min=min(val),q25=quantile(val,0.25),q75=quantile(val,0.75),max=max(val))
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
For all machines the mean and median seems to be about the same.\
Standard deviation and MAD also seem to be about the same except for a slight deviation for machine 1 and 5.\
There seem to be some differences between skewness and medcouple for machines 5, 6, 7, 8\
Kurtosis for machine 7 is quite high. The other machines seem to have a kurtosis close to 0.\
### Visualize the datasets
#### Scatterplot
{r fig.height=9}
plots <- list()
for(i in ma){
p = ggplot(data=filter(dat1,ma==i),mapping = aes(x=time,y=val)) + geom_point() + ggtitle(paste("ma ",i))
plots[[i]] <- p
}
gridExtra::grid.arrange(grobs=plots,ncol=2)
Data looks unsuspicous. Machine 7 might have an outlier.
#### Density plot
{r fig.height=9}
dplots <- list()
for(i in ma){
dp = ggplot(data=filter(dat1,ma==i),mapping = aes(x=val))+geom_histogram(aes(y=..density..), binwidth=0.3,colour="black", fill="white")+geom_density() +
stat_function(fun = dnorm, n = 101, args = list(mean = as.numeric(summary_val[i,2]), sd = as.numeric(summary_val[i,4])), colour = "red") + ggtitle(paste("ma ",i)) + geom_rug(alpha = 1/5)
dplots[[i]] <- dp
}
gridExtra::grid.arrange(grobs=dplots,ncol=2)
machine 7 seems to have an outlier. Other than that the data looks unsuspicious.
#### Box-Plot
{r}
ggplot(data=dat1,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
The machines could be all the same, but it is hard to tell.\
There might be some outliers. Exspecially machine 7 seems to have one.\
#### Q-Q-Plot
{r fig.height=9}
qqplots <- list()
for(i in ma){
qqp = ggqqplot(data=filter(dat1,ma==i), x = "val") + ggtitle(paste("ma ",i))
qqplots[[i]] <- qqp
}
gridExtra::grid.arrange(grobs=qqplots,ncol=2)
Machine 7 seems to have an outlier.\
machines 1, 4, 5, 6 might not be normal distributed.\
Other than that the data is unsuspicous.\
### statistical tests before comparison of machines
-test for normality: shapiro-wilk-test -> H~0~: distribution is normal distributed\
-testing if stationary: KSPP test -> H~0~: distribution is stationary\
-testing for outliers: Rosner test -> H~0~: there are no outliers in the distribution\
-testing necessary power for Box Cox transformation to normal distribution -> powerTransform
the significance level for all tests is set to alpha=5 perc \
#### test for normality with shapiro-wilk-test
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(val, family="bcPower")$lambda)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
for machines 1,2,3,4,8 H~0~ for normal distribution cannot be rejected. They could be normal distirbuted.\
machine 5 is very close to alpha value -> no clear decision regarding H~0~ can be made.\
for machines 6 and 7 H~0~ can be rejected they dont seem to be normal distributed\
\
all distributions seem to stationary as p-value of KSPP is above alpha.\
\
only machine 7 seems to have one outlier.\
\
the power for Box-Cox-Transformation is close to 1 for machines 1 to 4. Machines 5 to 8 is close to zero and should be transformed to be closer to normal distribution.\
###compare machines
#### Do machines 1 and 2 have the same performance?
##### graphcial
One way of graphical comparison is the Box plot\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Another way is to overlay the density plots.\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2),mapping = aes(x=val,color=ma)) + geom_density() + geom_rug()
##### hypothesis test
H~0~ machines 1 and 2 have the same variance.\
significance level $alpha=5\ perc "\
{r}
var.test(unlist(filter(dat1,ma==1)[3]), unlist(filter(dat1,ma==2)[3]))
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same variance.
H~0~ machines 1 and 2 are the same.\
significance level $alpha=5\ perc "\
{r}
t.test(filter(dat1,ma==1)[3], filter(dat1,ma==2)[3], conf.level = 0.95,var.equal =T)
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same performance.
Alternative the Welch-Test
H~0~ machines 1 and 2 are the same.\
significance level alpha=5 perc \
{r}
t.test(filter(dat1,ma==1)[3], filter(dat1,ma==2)[3], conf.level = 0.95,var.equal =F)
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same performance.
### Do machines 5 and 6 have the same performance?
{r}
ggplot(data=filter(dat1,ma==5 | ma==6), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Performance seems to be similar.\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2),mapping = aes(x=val,color=ma)) + geom_density() + geom_rug()
Densityplot confirms a very similar performance of the machines.\
##### hypothesis test
H~0~: machines 5 and 6 perform the same\
sign. level: alpha=5 perc \
wilcoxon test for non-parametric machine 5 and 6
{r}
dat1s1=filter(dat1,ma==5 | ma==6)
wilcox.test(dat1s1$val~dat1s1$ma, alternative = "two.sided",paired = F)
p-value of 0.45 is above set alpha -> H~0~ cannot be rejected\
-> machines seem to have the same performance\
### Do machines 1 to 3 have the same performance?
{r}
ggplot(data=filter(dat1,ma==1 | ma==2 |ma==3), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
there seems to be a slight difference in performance, though the standard deviation seems have a slight overlap\
-> perform other tests for more certain analysis.\
test variance for further analysis (3 data sets can be tested for the same variance with the bartlett test)
H~0~ machines 1 to 3 have the same variance.\
significance level $alpha=5\ perc "\
{r}
dat1s2=filter(dat1,ma==1 | ma==2| ma==3)
bartlett.test(dat1s2$val~dat1s2$ma)
p-value is higher than alpha -> H~0~ cannot be rejected.\
Datasets seem to have the same variance.\
Perform Anova to test for same performance of more than 2 datasets with same variance
H~0~: machines 1 to 3 perform the same\
sign. level alpha=5 perc \
{r}
res.aov<-aov(val~ma,data = dat1s2)
summary(res.aov)
p-value of 0.00778 is below alpha value -> H~0~ rejected\
-> machines dont seem to perform the same\
### Do machines 5 to 7 have the same performance?
{r}
ggplot(data=filter(dat1,ma==5 | ma==6 | ma==7), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Machine 7 might perform slightly better than the others, hard to tell as variance overlaps\
testing 3 data sets at once for same performance requires the ANOVA test for parametric distributions (normal distr.)\
In this case the datasets 6 and 7 are non-parametric -> Kruskal test
H~0~: machines 5, 6 and 7 perform the same\
sign. level alpha=5 perc
{r}
dat1s3=filter(dat1,ma==5 | ma==6 | ma==7)
kruskal.test(val~ma,data = dat1s3)
p-value of test is higher than alpha value -> H~0~ cannot be rejected\
-> machines 5 to 7 seem to perform the same\
#############3?
#############3?
You have three machines (ma). Two old ones and one new one. (Use: Ex3T1.exe)\
1.Determine the performance of the first machine with a relative error of less than 2 perc .
Approach the solution in two steps and verify it.\
## Screening for power analysis
### create test plan for screening
{r}
#alternative test plan
plan1 <- tibble(ma = 1)
#replicate
#plan1 perc > perc slice(rep(1:n(), each = 6)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
## "power analysis" for 0D distribution (measure one point of one machine wihtout varying parameter)
{r}
me1=mean(filter(dat1,ma==1)$val) # calculate mean
sd1=sd(filter(dat1,ma==1)$val) # calculate standard deviation
nt=ceiling((sd1/me1/0.02)^2) # round up number of experiments; 2 perc relative error
necessary number of experiments is `r nt`
## test plan from power analysis
{r}
#alternative test plan
plan2 <- tibble(ma = 1)
#replicate
plan2 perc > perc slice(rep(1:n(), each = nt)) -> plan2
#randomize row order
set.seed(1234)
plan2<-plan2[sample(nrow(plan2)),]
# convert to dataframe
plan2=as.data.frame(plan2)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from second test with number of experiments from power analysis
{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat2)
### verify that relative error is <= 2 perc
{r}
me2=mean(filter(dat2,ma==1)$val) # calculate mean
sd2=sd(filter(dat2,ma==1)$val) # calculate standard deviation
re2=(sd2/me2/sqrt(nrow(dat2)))
re2
The achieved relative error `r re2` is below the goal of 2 perc .\
2.In a second run you want to verify with 95 perc certainty that the second machine is having the
same performance allowing for a maximum deviation of 5 perc error of the first machine.\
## start with a power analysis to determine the number of experiments needed to compare performance of machine 1 and 2
{r}
dm=me2*0.05/sd2 #effect size
nt2=ceiling(pwr.t.test(n=NULL,d=dm, sig.level = 0.05, power = 0.95, type = "two.sample", alternative = "two.sided")$n)
nt2
There are `r nt2` test points for each machine needed.
## create test plan with `r nt2` experiments
{r}
#alternative test plan
ma = seq(1:2)
plan3 <- tibble(ma = ma)
#replicate
plan3 perc > perc slice(rep(1:n(), each = nt2)) -> plan3
#randomize row order
set.seed(1234)
plan3<-plan3[sample(nrow(plan3)),]
# convert to dataframe
plan3=as.data.frame(plan3)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan3,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from third test with number of experiments from power analysis
{r}
dat3=read.delim("plan3_res.csv",header = T,dec=".", sep = ";")
dat3=transform(dat3,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat3)
## now compare the two machines
### visual comparison
#### generate scatterplot and densityplot
{r fig.height=9}
ggplot(data=dat3,mapping = aes(x=time,y=val,color=ma)) + geom_point()
Data seems unsuspicious. Both machines might have some outliers. Both machines look very similar.
{r fig.height=9}
ggplot(data=dat3,mapping = aes(x=val,color=ma)) +geom_density() + geom_rug()
Machine 2 seems to perform better than machine 1.
#### Box-Notch plot
{r}
ggplot(data=dat3,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Both machines might have two outlierts. Both machines perform very similar, machine 2 might perform slightly better.
#### QQ-Plot
{r}
ggqqplot(data=dat3, x = "val", color = "ma")
Machine 2 might have deviations from the normal distribution.
### statistical comparison of machine 1 and 2
-Test for normality with shapiro-wilk test: H~0~ distribution is normal distributed\
-Test is distribution is stationary with KSPP test: H~0~ distribution is stationary\
-Outliers with Rosner Test\
signif. level is set to alpha=0.05\
{r}
summary_val <- dat3 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
-for both machines H~0~ for normal distribution cannot be rejected as p value is > alpha\
-KSPP test: H~0~ cannot be rejected for both machines as p value is > alpha -> Data seems stationary\
-both machines dont seem to have any outliers
#### test if performance of machine 1 and 2 is the same with t.test with 95 perc certainty and 5 perc relative error allowed
H~0~: machines 1 and 2 are the same\
significance level alpha=0.05\
{r}
t.test(filter(dat3,ma==1)[3],filter(dat3,ma==2)[3],alternative="two.sided",var.equals=F,conf.level=0.95)
p-value of 0.52 is higher than set alpha value -> machines 1 and 2 seem to perform the same
3.The third machine is new and is claimed to be at least 10 perc better than the first one. Test this
with 95 perc certainty\
## start with a power analysis to determine the number of experiments needed to compare performance of machine 1 and 3
{r}
me3=mean(filter(dat3,ma==1)$val) # calculate mean
sd3=sd(filter(dat3,ma==1)$val) # calculate standard deviation
dm2=me3*0.1/sd3 #effect size
nt3=ceiling(pwr.t.test(n=NULL,d=dm2, sig.level = 0.05, power = 0.95, type = "two.sample", alternative = "two.sided")$n)
nt3
There are `r nt3` test points for each machine needed.
## create test plan with `r nt3` experiments
{r}
#alternative test plan
ma = c(1,3)
plan4 <- tibble(ma = ma)
#replicate
plan4 perc > perc slice(rep(1:n(), each = nt3)) -> plan4
#randomize row order
set.seed(1234)
plan4<-plan4[sample(nrow(plan4)),]
# convert to dataframe
plan4=as.data.frame(plan4)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan4,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from third test with number of experiments from power analysis
{r}
dat4=read.delim("plan4_res.csv",header = T,dec=".", sep = ";")
dat4=transform(dat4,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat4)
## now compare the two machines
### visual comparison
#### generate scatterplot and densityplot
{r fig.height=9}
ggplot(data=dat4,mapping = aes(x=time,y=val,color=ma)) + geom_point()
Data seems unsuspicious. Machine 3 seems to perform better than machine 1\
{r fig.height=9}
ggplot(data=dat4,mapping = aes(x=val,color=ma)) +geom_density() + geom_rug()
Machine 3 seems to perform better than machine 1.
#### Box-Notch plot
{r}
ggplot(data=dat4,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
machine 3 seems to perform better than machine 1.
#### QQ-Plot
{r}
ggqqplot(data=dat4, x = "val", color = "ma")
Both machine distributions seem normal distributed without outliers.
### statistical comparison of machine 1 and 3
-Test for normality with shapiro-wilk test: H~0~ distribution is normal distributed\
-Test is distribution is stationary with KSPP test: H~0~ distribution is stationary\
-Outliers with Rosner Test\
signif. level is set to alpha=0.05\
{r}
summary_val <- dat4 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
-for both machines H~0~ for normal distribution cannot be rejected as p value is > alpha\
-KSPP test: H~0~ cannot be rejected for both machines as p value is > alpha -> Data seems stationary\
-both machines dont seem to have any outliers
#### test if performance of machine 3 is at least 10 perc better than machine 1 with t.test with 95 perc certainty
H~0~: The difference between machine 3 and 1 at least 10 perc of the mean of machine 1.\
significance level alpha=0.05\
{r}
m1=mean(filter(dat4,ma==1)$val)
m3=mean(filter(dat4,ma==3)$val)
# mu is the anticipated difference between data sets, REIHENFOLGE DER MASCHINEN SPIELT EINE ROLLE
t.test(filter(dat4,ma==3)[3],filter(dat4,ma==1)[3],mu=0.1*m1,alternative="less",var.equals=F,conf.level=0.95)
p-value of near 1 is much higher than set alpha value -> machine 3 seems to perform at least 10 perc better than machine 1
# Exercise 2
You have a new measurement device which you want to quality following the gage R&R analysis
together with two colleagues. (Use: Ex3T2.exe)\
1. Set up a test plan for doing the gage R&R.\
2. Evaluate the result. Is the measurement system acceptable\
## Generate test plan with operators and parts
{r}
op=seq(1,3) # number of operators
pa=seq(1,5) # number of parts
nr=3 # number of replicates
plan5=expand.grid(op,pa) # generate a base plan
plan5=do.call("rbind", replicate(nr, plan5, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan5=plan5[order(sample(1:nrow(plan5))),] # randomize design
plan5=as.data.frame(plan5) # make sure plan1 is dataframe
names(plan5)<- c("op","pa") # name the variables
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan5,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read test plan with results
{r}
dat5=read.delim("plan5_res.csv",header = T,dec=".", sep = ";")
dat5=transform(dat5,op=as.factor(op),pa=as.factor(pa)) # transform the machine number from a numerical to a factor for categorical
head(dat5)
### do an analysis of variance (linear regression model) to test the effect of operator and parts on val
H~0~: parts and operators dont have an influence on val
{r}
aov_model <- aov(val~pa*op,data = dat5)
#aov_model$coefficients
summary(aov_model)
As p-values for pa and op is < alpha these factors both seem to have a significant influence on val so H~0~ is rejected. For the interaction of parts and operators the p-value is > alpha so H~0~ cant be rejected. The interaction doesnt seem to have an influence on val.
### do an gage R&R Analysis
{r fig.height=9}
my.rr <- ss.rr(var = val, part = pa, appr = op, data = dat5, main = "Six Sigma Gage R&R Measure", sub = "Qualify M-Device")
Total Gage R&R standard deviation is below 1 perc and the study variation is below 9 perc .\
According to DOE: R&R variation of study variance < 10 perc and contribution variance < 1 perc \
Thus the measurement system is considered acceptable.
#############4?
#############4?
You have three machines (ma). Two old ones and one new one. (Use: Ex4T1.exe)\
You have two turning machines (ma). The process parameter that is open for you to alter is the
running speed (ts):\
```{r, echo=FALSE}
tabl <- "
| Process parameter | ts (rpm) |
|-------------------|:--------:|
| Min. value | 5000 |
| Current process | 7500 |
| Max. value | 10000 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
The target is to have a low roughness (ra). For the current process parameter, it is claimed to achieve
2 \B5m.
You will be asked to write down several plans in the following. These plans have all the same
structure. The file starts with the Matrikelnumber. This row is followed by a row with the column
names: ma, ts. In the following rows follows the plan with the levels. There are always 2 columns.
1. Determine the performance of the first machine at the current process parameter with a relative
error of less than 1 perc. . Approach the solution in two steps and verify it\
## create test plan for screening (for power analysis)
```{r}
ma=c(1) # number of machines tested
ts=c(7500) # turning speed numbers
plan1=expand.grid(ma,ts) # generate a base plan
plan1=do.call("rbind", replicate(6, plan1, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1=as.data.frame(plan1) # make sure plan1 is dataframe
names(plan1)<- c("ma","ts")
```
## write test plan for screening
```{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
## read screening test plan with results
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
```
## calculate number of necessary experiments for a relative error < 1 perc.
```{r}
me1=mean(filter(dat1,ma==1)$ra) # calculate mean
sd1=sd(filter(dat1,ma==1)$ra) # calculate standard deviation
nt=ceiling((sd1/me1/0.01)^2)
```
There are `r nt` test points for each machine needed.\
## create test plan with necessary number of experiments
```{r}
ma=c(1) # number of machines tested
ts=c(7500) # turning speed numbers
plan2=expand.grid(ma,ts) # generate a base plan
plan2=do.call("rbind", replicate(nt, plan2, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan2=plan2[order(sample(1:nrow(plan2))),] # randomize design
plan2=as.data.frame(plan2) # make sure plan1 is dataframe
names(plan2)<- c("ma","ts")
```
## write test plan
```{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
## read test plan with results
```{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat2)
```
## verify relative error is < 1 perc.
```{r}
me2=mean(filter(dat2,ma==1)$ra) # calculate mean
sd2=sd(filter(dat2,ma==1)$ra) # calculate standard deviation
re2=(sd2/me2/sqrt(nrow(dat2)))
re2
```
The achieved relative error `r re2` is below the goal of 1 perc .\
2. Characterize the generated dataset using characteristic numbers, graphs and statistical tests.\
## characterize the result of machine 1 visually
#### Scatterplot
```{r}
ggplot(data=filter(dat2,ma==1),mapping = aes(x=time,y=ra)) + geom_point() + ggtitle(paste("ma ",1))
```
Data looks unsuspicous. The machine might have some outliers. There seems to be no time drift.
#### Density plot
```{r}
ggplot(data=filter(dat1,ma==1),mapping = aes(x=ra))+geom_density() +
stat_function(fun = dnorm, n = 101, args = list(mean = as.numeric(summary_val[1,2]), sd = as.numeric(summary_val[1,4])), colour = "red") + ggtitle(paste("ma ",1)) + geom_rug(alpha = 1/5)
```
Distribution seems normal distributed.
#### Box-Plot
```{r}
ggplot(data=dat2,mapping = aes(y=ra,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
```
The machine might have some outliers.
#### Q-Q-Plot
```{r}
ggqqplot(data=filter(dat2,ma==1), x = "ra") + ggtitle(paste("ma ",1))
```
Data looks normal distributed, there seems to be one outlier.
## characterize the result of machine 1 with statistical functions
```{r}
summary_val <- dat1 perc. > perc. group_by(ma) perc. > perc. summarise( mean = mean(ra), median = median(ra), std_dev = sd(ra), MAD =mad(ra), skewness=skewness(ra),medcouple= mc(ra), kurtosis= kurtosis(ra),min=min(ra),q25=quantile(ra,0.25),q75=quantile(ra,0.75),max=max(ra))
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Characteristic Value") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
The mean and median seems to be about the same.\
Standard deviation is slightly higher than MAD.\
Skewness seems to be around double of medcouple\
Kurtosis is -1.7 so a flat distribution is expected.\
3. Does the performance comply with the claimed value?\
## first check for normality, if distribution is stationary and for outliers
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
```{r}
summary_val <- dat2 perc. > perc. group_by(ma) perc. > perc. summarise(shapiro_p = shapiro.test(ra)$p.value, kspp_p=kpss.test(ra)$p.value, n_outlier=rosnerTest(ra, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(ra, family="bcPower")$lambda)
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
- normality: H~0~ cant be rejected as p-value is > alpha value -> distribution seems to be normal\
- stationary: H~0~ cant be rejected as p-value is > alpha value -> distribution seems to be stationary\
- outliers: the machine doesnt seem to have any outliers\
- box cox: necessary power for transformation is about 1.57 for machine 1.\
## check per hypothesis testing if current process with ts of 7500rpm is able to achieve the claimed 2micrometers of roughness
H~0~: machine 1 performs better than 2micrometers of roughness
```{r}
# mu is the true value of the mean against the dataset is checked
t.test(filter(dat2,ma==1)[4],mu=2,alternative="greater",var.equals=F,conf.level=0.95)
```
H~0~ cant be rejected. p-value of near 1 is much higher than set alpha value -> machine 1 seems to perform better than 2 micrometers of roughness.
4. Then you compare the performance of the second machine with the first one at the current
process parameter.\
## compare the performance of machine 1 and machine 2 by first screening both machines with previously calculated necessary number of experiments
### Generate "Screening" Test plan
```{r class.source = fold-show}
ma=seq(1,2) # number of machines tested
ts=c(7500) # turning speed numbers
nr=nt # number of replicates
plan3=expand.grid(ma,ts) # generate a base plan
plan3=do.call("rbind", replicate(nr, plan3, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan3=plan3[order(sample(1:nrow(plan3))),] # randomize design
plan3=as.data.frame(plan3) # make sure plan3 is dataframe
names(plan3)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan3,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data for both machines
```{r}
dat3=read.delim("plan3_res.csv",header = T,dec=".", sep = ";")
dat3=transform(dat3,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat3)
```
### compare data of machines visually and look for normality, outliers and if stationary
##### Scatterplot
```{r}
ggplot(data=dat3,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
Machines seem to perform very similar. Data looks unsuspicous.
##### Density Plot
```{r}
ggplot(data=dat3,mapping = aes(x=ra,color=ma)) +geom_density() + geom_rug() + scale_color_manual("Machines",values=c("red", "blue", "green"))
```
Machines seem to perform very similar. Both distributions look normal distributed.
##### Box-Notch Plot
```{r}
ggplot(data=dat3,mapping = aes(y=ra,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
```
There might be outliers for machine 2. Performance of both machines could be the same.
##### QQ-Plot
```{r}
ggqqplot(data=dat3, x = "ra", color = "ma") + scale_color_manual(values=c("red", "blue", "green"))
```
Data are normal distributed. There dont seem to be any outliers.
### do hypothesis tests on both machines
#### check for normality, outliers and if distributions are stationary
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
```{r}
summary_val <- dat3 perc. > perc. group_by(ma) perc. > perc. summarise(shapiro_p = shapiro.test(ra)$p.value, kspp_p=kpss.test(ra)$p.value, n_outlier=rosnerTest(ra, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(ra, family="bcPower")$lambda)
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
- normality: H~0~ cant be rejected for both machines as p-value is > alpha value -> distribution seems to be normal\
- stationary: H~0~ cant be rejected for both machines as p-value is > alpha value -> distribution seems to be stationary\
- outliers: the machines dont seem to have any outliers\
- box cox: necessary power for transformation is about 1.84 for machine 1 and 0.275 for machine 2.\
#### compare distributions of both machines per hypothesis testing
Using welch test assuming difference in variance between distributions.
H~0~ machines 1 and 2 are the same.\
significance level alpha=0.05 \
```{r}
t.test(filter(dat3,ma==1)[4], filter(dat3,ma==2)[4], conf.level = 0.95,var.equal =F)
```
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to achieve the same roughness.
5. After having understood the standard process setting performance you want to derive a model
for the first machine describing the performance over the full range of turning speeds. You want
to have the model with a power of 99 perc. and a significance level of 1 perc. \
## first generate screening plan with 2 points (linear) for machine 1
### Generate "Screening" Test plan
```{r class.source = fold-show}
ma=seq(1) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=6 # number of replicates
plan4=expand.grid(ma,ts) # generate a base plan
plan4=do.call("rbind", replicate(nr, plan4, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan4=plan4[order(sample(1:nrow(plan4))),] # randomize design
plan4=as.data.frame(plan4) # make sure plan3 is dataframe
names(plan4)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan4,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data with results for linear regression (2 points) for machine 1
```{r}
dat4=read.delim("plan4_res.csv",header = T,dec=".", sep = ";")
dat4=transform(dat4,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat4)
```
### Inspect results
```{r}
ggplot(data=dat4,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
There seems to be no time drift.
H~0~ data is stationary\
$alpha = 5\ perc. $
```{r}
kpss.test(dat4$ra)
```
$p>alpha \therefore H_0$ cannot be rejected. Thus data can be assumed to be stationary.
```{r}
ggplot(data=dat4,mapping = aes(x=ts,y=ra,color=ma)) + geom_point() + scale_color_manual("Machines",values=c("red", "blue", "green"))
```
There seems to be a turnings speed dependence.
## estimate the necessary number of experiments for power of 99 perc. and sign. level of 1 perc.
### Do a first model for power analysis.\
H~0~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod1<-lm(ra~ts,data = dat4)
summary(mod1)
```
$p<alpha for both intercept and ts \therefore H_0$ has to be rejected. Thus doing a linear model is reasonable.
### Do a power analysis.
```{r}
r2= summary(mod1)$r.squared
f=r2/(1-r2)
uf=1
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2=ceiling(p_res$v+uf+1)
```
For each level `r n2` experiments should be run.
#### generate plan for linear regression with previously estimated number of necessary experiments for each level
```{r class.source = fold-show}
ma=seq(1) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=ceiling(n2/2) # number of replicates for each level (2 levels -> divide by 2)
plan5=expand.grid(ma,ts) # generate a base plan
plan5=do.call("rbind", replicate(nr, plan5, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan5=plan5[order(sample(1:nrow(plan5))),] # randomize design
plan5=as.data.frame(plan5) # make sure plan5 is dataframe
names(plan5)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan5,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat5=read.delim("plan5_res.csv",header = T,dec=".", sep = ";")
dat5=transform(dat5,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat5)
```
### Generate linear regression model with new results
H~0~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod2<-lm(ra~ts,data = dat5)
summary(mod2)
```
$p<alpha for both intercept and ts \therefore H_0$ has to be rejected. Thus doing a linear model is reasonable.
#### Visualize the result
```{r}
ggplot(data=dat5,mapping = aes(x=ts,y=ra,color=ma)) + geom_point()+ geom_smooth(method=lm, formula= y~x, se=T) + scale_color_manual("Machines",values=c("black", "red", "blue", "green")) + labs(title = paste("Adj R2 = ",signif(summary(mod2)$adj.r.squared, 5), "Intercept =",signif(mod2$coef[[1]],5 )," Slope =",signif(mod2$coef[[2]], 5)," P =",signif(summary(mod2)$coef[2,4], 5)))
```
Linear Regression seems to capture the characteristics of the dataset reasonably. Though r^2 is quite low with 0.42 due to large variance in measurement data.
```{r}
ggplot(data=dat5,mapping = aes(x=ts,y=ra,color=ma)) + geom_point()+ geom_smooth(method=lm, formula= y~x, se=T) + scale_color_manual("Machines",values=c("black", "red", "blue", "green")) + stat_regline_equation(label.x = 8000, label.y = 2.3) + stat_cor(label.x = 8000, label.y = 2.2)
```
#### Test the assumptions of the regression
##### Test the normality of the residuals.
Do a qq-plot
```{r}
ggqqplot(mod2$residuals)
```
Residuals seem to be normal distributed. There seem to be some outliers.
do a shapiro-wilk test on the residuals.
H~0~ Data are normal distributed.\
significance level: $alpha=5\ perc. $
```{r}
shapiro.test(mod2$residuals)
```
$p>alpha \therefore H_0$ cannot be rejected.\
Thus the data a normal distributed.\
##### Test the homogeneity of the residuals (Homoscedasticity)\
Do a scatter plot
```{r warning=F}
spreadLevelPlot(mod2)
```
The residuals look like they might be homogeneous.
> H~0~ residuals are homogeneous distributed\
significance level: $alpha=5\ perc. $
```{r}
ncvTest(mod2)
```
$p>alpha \therefore H_0$ cant be rejected.\
Thus the residuals seem to be homogeneous.\
##### Look for high leverage points outliers
Calculate the critical Cooks distance.
```{r}
cd1c=4/length(mod2$residuals)
cd1=abs(cooks.distance(mod2))
subset(cd1, cd1 > cd1c)
```
There might be a high leverage outlier (data point with index 18).
```{r warning=F}
influenceIndexPlot(mod2, vars=c("Cook", "hat"),id=list(n=3))
```
There might be a high leverage outlier at index 18.
##### Check for autocorrelation
```{r}
acf(mod2$residuals)
```
There might be slight autocorrelation (periodicity).
> H~0~ residuals are not autocorrelated\
significance level: $alpha=5\ perc. $
```{r}
durbinWatsonTest(mod2)
```
$p>alpha \therefore H_0$ cannot be rejected.\
Thus the residuals dont seem to be autocorrelated.
##### Testing for Multicollinearity
Testing multicollinearity here makes no sense, because there is only one factor.
```{r}
# vif(mod2)
```
## Compare the two machines with linear regression models for both machines
### generate screening plan
```{r class.source = fold-show}
ma=seq(1,2) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=n2 # number of replicates
plan6=expand.grid(ma,ts) # generate a base plan
plan6=do.call("rbind", replicate(nr, plan6, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan6=plan6[order(sample(1:nrow(plan6))),] # randomize design
plan6=as.data.frame(plan6) # make sure plan6 is dataframe
names(plan6)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan6.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan6,file="plan6.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat6=read.delim("plan6_res.csv",header = T,dec=".", sep = ";")
dat6=transform(dat6,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat6)
```
### Inspect results
```{r}
ggplot(data=dat6,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
Results look similar.
### Do the full model
H~01~ There is no ts dependence.\
H~02~ There is no machine dependence.\
$alpha = 5\ perc. $
```{r}
mod3<-lm(ra~ma*ts,data = dat6)
summary(mod3)
```
There seems to be no machine dependence. Only intercept and ts seem to have an influence on ra. The interaction between machine 2 and ts doesnt seem to matter either.
### Do a reduced model
H~01~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod3r<-lm(ra~ts,data = dat6)
summary(mod3r)
```
### Compare the two models
H~0~ full model and reduced model have the same quality.\
$alpha = 5\ perc. $
```{r}
anova(mod3r,mod3)
```
$p>alpha \therefore H_0$ cannot be rejected.\
The reduced model seems to capture the characteristic of the dataset as well as the full model.
#############5?
#############5?
#############6?
#############6?
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.