Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
###########1?
## Generate Data
Task:\
- You have seven machines for which you want to find out what they do. Write a test plan into a file
(suggested replicates: 300).\
- The file starts with the Matrikelnumber. This row is followed by a row with names with 1 column.
Names: ma. In the following rows follows the plan with the machines to be tested. There is always 1
column.\
- Set up a test plan to investigate the machines and write the plan to a csv file.
{r}
ma=seq(1,7) # number of machines tested
nr=300 # number of replicates
plan1=expand.grid(ma) # generate a base (matrix with 7 rows with values 1 to 7)
plan1=do.call("rbind", replicate(nr, plan1, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1=as.data.frame(plan1) # make sure plan1 is dataframe
names(plan1)<- c("ma")
{r}
#alternative test plan
plan1 <- tibble(ma = 1:7)
#replicate 300x
plan1 perc > perc slice(rep(1:n(), each = 300)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read test plan with results
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
## characteristic values
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( mean = mean(val), median = median(val), std_dev = sd(val), MAD =mad(val), skewness=skewness(val),medcouple= mc(val), kurtosis= kurtosis(val),min=min(val),q25=quantile(val,0.25),q75=quantile(val,0.75),max=max(val))
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
- mean values seem to be very similar except for machine 6, the same applies for the standard deviation.\
- Machine 6 has a much lower mean and standard deviation.\
- Comparing the MAD with the standard deviation, there seems to be a larger difference for machine 6, the MAD is much lower than the standard deviation, so there seem to be some outliers.\
- Skewness is near zero for machines 2,3 and 4 and machines 1,5,6 and 7 seem to be skewed.\
- Comparing the medcouple (robust) with the skewness, the medcouple is closer to zero for all machines.\
- Machine 1 and 6 still seem to be slightly skewed.\
- Kurtosis shows a very high value for machine 6, as already expected from the standard deviation, the distribution seems to be peaky.\
- Judging by Kurtosis, machines 3 and 4 seem to be close to a normal distribution.
## visualize data
### Scatterplot
{r fig.height=9}
plots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
p = ggplot(data=filter(dat1,ma==i),aes(x=time,y=val)) + geom_point() + ggtitle(paste("ma ",i)) + geom_smooth(method="auto", level=0.95)
plots[[i]] <- p
}
# display the scatterplots
gridExtra::grid.arrange(grobs=plots,ncol=2)
- Machine 4 seems to have some positive drift over time.\
- Machines 1, 3, 5, 6 ,7 seem to have some outliers but no discernable drift.
### Density +Historgram + "theo. Dist."
{r fig.height=9}
dplots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
dp = ggplot(data=filter(dat1,ma==i),aes(x=val))+geom_histogram(aes(y=..density..), binwidth=0.15,colour="black", fill="white")+geom_density() + ggtitle(paste("ma ",i)) + geom_rug(alpha = 1/5)
dplots[[i]] <- dp
}
# display the density plots
gridExtra::grid.arrange(grobs=dplots,ncol=2)
- Machine 2 seems to be the sum of two distributions.\
- Machines 1 and 7 seem to be skewed.\
- Machine 6 is has a high peak and low standard deviation.
### Box-Plot
{r}
ggplot(data=dat1, aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
- Machine 1,5 and 7 seem to have outliers. Machine 2 has a wide distribution (because it is sum of two distributions).\
- Machine 6 has a very low standard deviation and much lower mean than the other data sets.
### Q-Q-Plot
{r fig.height=9}
qqplots <- list() # generate an empty list
# run a loop to generate all scatter plots
for(i in ma){
qqp = ggqqplot(data=filter(dat1,ma==i), x = "val") + ggtitle(paste("ma ",i))
qqplots[[i]] <- qqp
}
# display the density plots
gridExtra::grid.arrange(grobs=qqplots,ncol=2)
- Machines 1,2,5,6 and 7 are not normal distributed.\
- Machine 4 might not be normal distributed.
## Statistical tests
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(val, family="bcPower")$lambda)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
- normality: H~0~ has to be rejected for machine 1,2,5,6 and 7 ($p<alpha$) and cannot be rejected for 3,4. Thus 3 and 4 could be normal distributed.\
- stationary: H~0~ has to be rejected for machine 4 ($p<alpha$) and cannot be rejected for the rest. Thus all machines except for machine 4 could be stationary.\
- outliers: Machines 1, 5, 6, 7 seem to have outliers\
- box cox: necessary power for transformation is about -2.1 for machine 1, -0.77 for machine 5, 0.55 for machine 6. and 3.2 for machine 7.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#############2?
#############2?
Task:\
- You have eight machines (ma) for which you want to find out what they do. All machines are of the
same kind and are supposed to do the very same, but the first four are of one brand (?? ? {1,2,3,4})
and the other four are of the second brand (?? ? {5,6,7,8}).\
- According to the different tasks write test plans into files.\
- The files all start with the Matrikelnumber.\
- This row is followed by a row with names with 1 column. Names: ma.\
- In the following rows follows the plan with the machines to be tested.\
- There is always 1 column. \
- Set up a test plan to investigate the machines and write the plan to a csv file.\
### Set up test plan
{r}
#alternative test plan
ma <- seq(1:8)
plan1 <- tibble(ma = ma)
#replicate
plan1 perc > perc slice(rep(1:n(), each = 100)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
### read test plan with results
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
### Characterize all machines individually with the appropriate characteristic numbers, graphs and statistical tests. (100 replications should be appropriate.)
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( mean = mean(val), median = median(val), std_dev = sd(val), MAD =mad(val), skewness=skewness(val),medcouple= mc(val), kurtosis= kurtosis(val),min=min(val),q25=quantile(val,0.25),q75=quantile(val,0.75),max=max(val))
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
For all machines the mean and median seems to be about the same.\
Standard deviation and MAD also seem to be about the same except for a slight deviation for machine 1 and 5.\
There seem to be some differences between skewness and medcouple for machines 5, 6, 7, 8\
Kurtosis for machine 7 is quite high. The other machines seem to have a kurtosis close to 0.\
### Visualize the datasets
#### Scatterplot
{r fig.height=9}
plots <- list()
for(i in ma){
p = ggplot(data=filter(dat1,ma==i),mapping = aes(x=time,y=val)) + geom_point() + ggtitle(paste("ma ",i))
plots[[i]] <- p
}
gridExtra::grid.arrange(grobs=plots,ncol=2)
Data looks unsuspicous. Machine 7 might have an outlier.
#### Density plot
{r fig.height=9}
dplots <- list()
for(i in ma){
dp = ggplot(data=filter(dat1,ma==i),mapping = aes(x=val))+geom_histogram(aes(y=..density..), binwidth=0.3,colour="black", fill="white")+geom_density() +
stat_function(fun = dnorm, n = 101, args = list(mean = as.numeric(summary_val[i,2]), sd = as.numeric(summary_val[i,4])), colour = "red") + ggtitle(paste("ma ",i)) + geom_rug(alpha = 1/5)
dplots[[i]] <- dp
}
gridExtra::grid.arrange(grobs=dplots,ncol=2)
machine 7 seems to have an outlier. Other than that the data looks unsuspicious.
#### Box-Plot
{r}
ggplot(data=dat1,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
The machines could be all the same, but it is hard to tell.\
There might be some outliers. Exspecially machine 7 seems to have one.\
#### Q-Q-Plot
{r fig.height=9}
qqplots <- list()
for(i in ma){
qqp = ggqqplot(data=filter(dat1,ma==i), x = "val") + ggtitle(paste("ma ",i))
qqplots[[i]] <- qqp
}
gridExtra::grid.arrange(grobs=qqplots,ncol=2)
Machine 7 seems to have an outlier.\
machines 1, 4, 5, 6 might not be normal distributed.\
Other than that the data is unsuspicous.\
### statistical tests before comparison of machines
-test for normality: shapiro-wilk-test -> H~0~: distribution is normal distributed\
-testing if stationary: KSPP test -> H~0~: distribution is stationary\
-testing for outliers: Rosner test -> H~0~: there are no outliers in the distribution\
-testing necessary power for Box Cox transformation to normal distribution -> powerTransform
the significance level for all tests is set to alpha=5 perc \
#### test for normality with shapiro-wilk-test
{r}
summary_val <- dat1 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(val, family="bcPower")$lambda)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
for machines 1,2,3,4,8 H~0~ for normal distribution cannot be rejected. They could be normal distirbuted.\
machine 5 is very close to alpha value -> no clear decision regarding H~0~ can be made.\
for machines 6 and 7 H~0~ can be rejected they dont seem to be normal distributed\
\
all distributions seem to stationary as p-value of KSPP is above alpha.\
\
only machine 7 seems to have one outlier.\
\
the power for Box-Cox-Transformation is close to 1 for machines 1 to 4. Machines 5 to 8 is close to zero and should be transformed to be closer to normal distribution.\
###compare machines
#### Do machines 1 and 2 have the same performance?
##### graphcial
One way of graphical comparison is the Box plot\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Another way is to overlay the density plots.\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2),mapping = aes(x=val,color=ma)) + geom_density() + geom_rug()
##### hypothesis test
H~0~ machines 1 and 2 have the same variance.\
significance level $alpha=5\ perc "\
{r}
var.test(unlist(filter(dat1,ma==1)[3]), unlist(filter(dat1,ma==2)[3]))
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same variance.
H~0~ machines 1 and 2 are the same.\
significance level $alpha=5\ perc "\
{r}
t.test(filter(dat1,ma==1)[3], filter(dat1,ma==2)[3], conf.level = 0.95,var.equal =T)
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same performance.
Alternative the Welch-Test
H~0~ machines 1 and 2 are the same.\
significance level alpha=5 perc \
{r}
t.test(filter(dat1,ma==1)[3], filter(dat1,ma==2)[3], conf.level = 0.95,var.equal =F)
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to have the same performance.
### Do machines 5 and 6 have the same performance?
{r}
ggplot(data=filter(dat1,ma==5 | ma==6), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Performance seems to be similar.\
{r}
ggplot(data=filter(dat1,ma==1 | ma==2),mapping = aes(x=val,color=ma)) + geom_density() + geom_rug()
Densityplot confirms a very similar performance of the machines.\
##### hypothesis test
H~0~: machines 5 and 6 perform the same\
sign. level: alpha=5 perc \
wilcoxon test for non-parametric machine 5 and 6
{r}
dat1s1=filter(dat1,ma==5 | ma==6)
wilcox.test(dat1s1$val~dat1s1$ma, alternative = "two.sided",paired = F)
p-value of 0.45 is above set alpha -> H~0~ cannot be rejected\
-> machines seem to have the same performance\
### Do machines 1 to 3 have the same performance?
{r}
ggplot(data=filter(dat1,ma==1 | ma==2 |ma==3), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
there seems to be a slight difference in performance, though the standard deviation seems have a slight overlap\
-> perform other tests for more certain analysis.\
test variance for further analysis (3 data sets can be tested for the same variance with the bartlett test)
H~0~ machines 1 to 3 have the same variance.\
significance level $alpha=5\ perc "\
{r}
dat1s2=filter(dat1,ma==1 | ma==2| ma==3)
bartlett.test(dat1s2$val~dat1s2$ma)
p-value is higher than alpha -> H~0~ cannot be rejected.\
Datasets seem to have the same variance.\
Perform Anova to test for same performance of more than 2 datasets with same variance
H~0~: machines 1 to 3 perform the same\
sign. level alpha=5 perc \
{r}
res.aov<-aov(val~ma,data = dat1s2)
summary(res.aov)
p-value of 0.00778 is below alpha value -> H~0~ rejected\
-> machines dont seem to perform the same\
### Do machines 5 to 7 have the same performance?
{r}
ggplot(data=filter(dat1,ma==5 | ma==6 | ma==7), aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Machine 7 might perform slightly better than the others, hard to tell as variance overlaps\
testing 3 data sets at once for same performance requires the ANOVA test for parametric distributions (normal distr.)\
In this case the datasets 6 and 7 are non-parametric -> Kruskal test
H~0~: machines 5, 6 and 7 perform the same\
sign. level alpha=5 perc
{r}
dat1s3=filter(dat1,ma==5 | ma==6 | ma==7)
kruskal.test(val~ma,data = dat1s3)
p-value of test is higher than alpha value -> H~0~ cannot be rejected\
-> machines 5 to 7 seem to perform the same\
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#############3?
#############3?
You have three machines (ma). Two old ones and one new one. (Use: Ex3T1.exe)\
1.Determine the performance of the first machine with a relative error of less than 2 perc .
Approach the solution in two steps and verify it.\
## Screening for power analysis
### create test plan for screening
{r}
#alternative test plan
plan1 <- tibble(ma = 1)
#replicate
#plan1 perc > perc slice(rep(1:n(), each = 6)) -> plan1
#randomize row order
set.seed(1234)
plan1<-plan1[sample(nrow(plan1)),]
# convert to dataframe
plan1=as.data.frame(plan1)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data
{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
## "power analysis" for 0D distribution (measure one point of one machine wihtout varying parameter)
{r}
me1=mean(filter(dat1,ma==1)$val) # calculate mean
sd1=sd(filter(dat1,ma==1)$val) # calculate standard deviation
nt=ceiling((sd1/me1/0.02)^2) # round up number of experiments; 2 perc relative error
necessary number of experiments is `r nt`
## test plan from power analysis
{r}
#alternative test plan
plan2 <- tibble(ma = 1)
#replicate
plan2 perc > perc slice(rep(1:n(), each = nt)) -> plan2
#randomize row order
set.seed(1234)
plan2<-plan2[sample(nrow(plan2)),]
# convert to dataframe
plan2=as.data.frame(plan2)
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from second test with number of experiments from power analysis
{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat2)
### verify that relative error is <= 2 perc
{r}
me2=mean(filter(dat2,ma==1)$val) # calculate mean
sd2=sd(filter(dat2,ma==1)$val) # calculate standard deviation
re2=(sd2/me2/sqrt(nrow(dat2)))
re2
The achieved relative error `r re2` is below the goal of 2 perc .\
2.In a second run you want to verify with 95 perc certainty that the second machine is having the
same performance allowing for a maximum deviation of 5 perc error of the first machine.\
## start with a power analysis to determine the number of experiments needed to compare performance of machine 1 and 2
{r}
dm=me2*0.05/sd2 #effect size
nt2=ceiling(pwr.t.test(n=NULL,d=dm, sig.level = 0.05, power = 0.95, type = "two.sample", alternative = "two.sided")$n)
nt2
There are `r nt2` test points for each machine needed.
## create test plan with `r nt2` experiments
{r}
#alternative test plan
ma = seq(1:2)
plan3 <- tibble(ma = ma)
#replicate
plan3 perc > perc slice(rep(1:n(), each = nt2)) -> plan3
#randomize row order
set.seed(1234)
plan3<-plan3[sample(nrow(plan3)),]
# convert to dataframe
plan3=as.data.frame(plan3)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan3,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from third test with number of experiments from power analysis
{r}
dat3=read.delim("plan3_res.csv",header = T,dec=".", sep = ";")
dat3=transform(dat3,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat3)
## now compare the two machines
### visual comparison
#### generate scatterplot and densityplot
{r fig.height=9}
ggplot(data=dat3,mapping = aes(x=time,y=val,color=ma)) + geom_point()
Data seems unsuspicious. Both machines might have some outliers. Both machines look very similar.
{r fig.height=9}
ggplot(data=dat3,mapping = aes(x=val,color=ma)) +geom_density() + geom_rug()
Machine 2 seems to perform better than machine 1.
#### Box-Notch plot
{r}
ggplot(data=dat3,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
Both machines might have two outlierts. Both machines perform very similar, machine 2 might perform slightly better.
#### QQ-Plot
{r}
ggqqplot(data=dat3, x = "val", color = "ma")
Machine 2 might have deviations from the normal distribution.
### statistical comparison of machine 1 and 2
-Test for normality with shapiro-wilk test: H~0~ distribution is normal distributed\
-Test is distribution is stationary with KSPP test: H~0~ distribution is stationary\
-Outliers with Rosner Test\
signif. level is set to alpha=0.05\
{r}
summary_val <- dat3 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
-for both machines H~0~ for normal distribution cannot be rejected as p value is > alpha\
-KSPP test: H~0~ cannot be rejected for both machines as p value is > alpha -> Data seems stationary\
-both machines dont seem to have any outliers
#### test if performance of machine 1 and 2 is the same with t.test with 95 perc certainty and 5 perc relative error allowed
H~0~: machines 1 and 2 are the same\
significance level alpha=0.05\
{r}
t.test(filter(dat3,ma==1)[3],filter(dat3,ma==2)[3],alternative="two.sided",var.equals=F,conf.level=0.95)
p-value of 0.52 is higher than set alpha value -> machines 1 and 2 seem to perform the same
3.The third machine is new and is claimed to be at least 10 perc better than the first one. Test this
with 95 perc certainty\
## start with a power analysis to determine the number of experiments needed to compare performance of machine 1 and 3
{r}
me3=mean(filter(dat3,ma==1)$val) # calculate mean
sd3=sd(filter(dat3,ma==1)$val) # calculate standard deviation
dm2=me3*0.1/sd3 #effect size
nt3=ceiling(pwr.t.test(n=NULL,d=dm2, sig.level = 0.05, power = 0.95, type = "two.sample", alternative = "two.sided")$n)
nt3
There are `r nt3` test points for each machine needed.
## create test plan with `r nt3` experiments
{r}
#alternative test plan
ma = c(1,3)
plan4 <- tibble(ma = ma)
#replicate
plan4 perc > perc slice(rep(1:n(), each = nt3)) -> plan4
#randomize row order
set.seed(1234)
plan4<-plan4[sample(nrow(plan4)),]
# convert to dataframe
plan4=as.data.frame(plan4)
{r}
# save as csv
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes th>e test plan
write.table(plan4,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read back data from third test with number of experiments from power analysis
{r}
dat4=read.delim("plan4_res.csv",header = T,dec=".", sep = ";")
dat4=transform(dat4,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat4)
## now compare the two machines
### visual comparison
#### generate scatterplot and densityplot
{r fig.height=9}
ggplot(data=dat4,mapping = aes(x=time,y=val,color=ma)) + geom_point()
Data seems unsuspicious. Machine 3 seems to perform better than machine 1\
{r fig.height=9}
ggplot(data=dat4,mapping = aes(x=val,color=ma)) +geom_density() + geom_rug()
Machine 3 seems to perform better than machine 1.
#### Box-Notch plot
{r}
ggplot(data=dat4,mapping = aes(y=val,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
machine 3 seems to perform better than machine 1.
#### QQ-Plot
{r}
ggqqplot(data=dat4, x = "val", color = "ma")
Both machine distributions seem normal distributed without outliers.
### statistical comparison of machine 1 and 3
-Test for normality with shapiro-wilk test: H~0~ distribution is normal distributed\
-Test is distribution is stationary with KSPP test: H~0~ distribution is stationary\
-Outliers with Rosner Test\
signif. level is set to alpha=0.05\
{r}
summary_val <- dat4 perc > perc group_by(ma) perc > perc summarise( shapiro_p = shapiro.test(val)$p.value, kspp_p=kpss.test(val)$p.value,n_outlier=rosnerTest(val, k = 3, alpha = 0.05, warn = F)$n.outliers)
summary_val perc > perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc > perc
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc > perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
-for both machines H~0~ for normal distribution cannot be rejected as p value is > alpha\
-KSPP test: H~0~ cannot be rejected for both machines as p value is > alpha -> Data seems stationary\
-both machines dont seem to have any outliers
#### test if performance of machine 3 is at least 10 perc better than machine 1 with t.test with 95 perc certainty
H~0~: The difference between machine 3 and 1 at least 10 perc of the mean of machine 1.\
significance level alpha=0.05\
{r}
m1=mean(filter(dat4,ma==1)$val)
m3=mean(filter(dat4,ma==3)$val)
# mu is the anticipated difference between data sets, REIHENFOLGE DER MASCHINEN SPIELT EINE ROLLE
t.test(filter(dat4,ma==3)[3],filter(dat4,ma==1)[3],mu=0.1*m1,alternative="less",var.equals=F,conf.level=0.95)
p-value of near 1 is much higher than set alpha value -> machine 3 seems to perform at least 10 perc better than machine 1
# Exercise 2
You have a new measurement device which you want to quality following the gage R&R analysis
together with two colleagues. (Use: Ex3T2.exe)\
1. Set up a test plan for doing the gage R&R.\
2. Evaluate the result. Is the measurement system acceptable\
## Generate test plan with operators and parts
{r}
op=seq(1,3) # number of operators
pa=seq(1,5) # number of parts
nr=3 # number of replicates
plan5=expand.grid(op,pa) # generate a base plan
plan5=do.call("rbind", replicate(nr, plan5, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan5=plan5[order(sample(1:nrow(plan5))),] # randomize design
plan5=as.data.frame(plan5) # make sure plan1 is dataframe
names(plan5)<- c("op","pa") # name the variables
{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan5,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
## read test plan with results
{r}
dat5=read.delim("plan5_res.csv",header = T,dec=".", sep = ";")
dat5=transform(dat5,op=as.factor(op),pa=as.factor(pa)) # transform the machine number from a numerical to a factor for categorical
head(dat5)
### do an analysis of variance (linear regression model) to test the effect of operator and parts on val
H~0~: parts and operators dont have an influence on val
{r}
aov_model <- aov(val~pa*op,data = dat5)
#aov_model$coefficients
summary(aov_model)
As p-values for pa and op is < alpha these factors both seem to have a significant influence on val so H~0~ is rejected. For the interaction of parts and operators the p-value is > alpha so H~0~ cant be rejected. The interaction doesnt seem to have an influence on val.
### do an gage R&R Analysis
{r fig.height=9}
my.rr <- ss.rr(var = val, part = pa, appr = op, data = dat5, main = "Six Sigma Gage R&R Measure", sub = "Qualify M-Device")
Total Gage R&R standard deviation is below 1 perc and the study variation is below 9 perc .\
According to DOE: R&R variation of study variance < 10 perc and contribution variance < 1 perc \
Thus the measurement system is considered acceptable.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#############4?
#############4?
You have three machines (ma). Two old ones and one new one. (Use: Ex4T1.exe)\
You have two turning machines (ma). The process parameter that is open for you to alter is the
running speed (ts):\
```{r, echo=FALSE}
tabl <- "
| Process parameter | ts (rpm) |
|-------------------|:--------:|
| Min. value | 5000 |
| Current process | 7500 |
| Max. value | 10000 |
"
cat(tabl) # output the table in a format good for HTML/PDF/docx conversion
```
The target is to have a low roughness (ra). For the current process parameter, it is claimed to achieve
2 \B5m.
You will be asked to write down several plans in the following. These plans have all the same
structure. The file starts with the Matrikelnumber. This row is followed by a row with the column
names: ma, ts. In the following rows follows the plan with the levels. There are always 2 columns.
1. Determine the performance of the first machine at the current process parameter with a relative
error of less than 1 perc. . Approach the solution in two steps and verify it\
## create test plan for screening (for power analysis)
```{r}
ma=c(1) # number of machines tested
ts=c(7500) # turning speed numbers
plan1=expand.grid(ma,ts) # generate a base plan
plan1=do.call("rbind", replicate(6, plan1, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1=as.data.frame(plan1) # make sure plan1 is dataframe
names(plan1)<- c("ma","ts")
```
## write test plan for screening
```{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
## read screening test plan with results
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat1)
```
## calculate number of necessary experiments for a relative error < 1 perc.
```{r}
me1=mean(filter(dat1,ma==1)$ra) # calculate mean
sd1=sd(filter(dat1,ma==1)$ra) # calculate standard deviation
nt=ceiling((sd1/me1/0.01)^2)
```
There are `r nt` test points for each machine needed.\
## create test plan with necessary number of experiments
```{r}
ma=c(1) # number of machines tested
ts=c(7500) # turning speed numbers
plan2=expand.grid(ma,ts) # generate a base plan
plan2=do.call("rbind", replicate(nt, plan2, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan2=plan2[order(sample(1:nrow(plan2))),] # randomize design
plan2=as.data.frame(plan2) # make sure plan1 is dataframe
names(plan2)<- c("ma","ts")
```
## write test plan
```{r}
# save as csv
# First line writes the MatrikelnummerQ
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
## read test plan with results
```{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor for categorical
head(dat2)
```
## verify relative error is < 1 perc.
```{r}
me2=mean(filter(dat2,ma==1)$ra) # calculate mean
sd2=sd(filter(dat2,ma==1)$ra) # calculate standard deviation
re2=(sd2/me2/sqrt(nrow(dat2)))
re2
```
The achieved relative error `r re2` is below the goal of 1 perc .\
2. Characterize the generated dataset using characteristic numbers, graphs and statistical tests.\
## characterize the result of machine 1 visually
#### Scatterplot
```{r}
ggplot(data=filter(dat2,ma==1),mapping = aes(x=time,y=ra)) + geom_point() + ggtitle(paste("ma ",1))
```
Data looks unsuspicous. The machine might have some outliers. There seems to be no time drift.
#### Density plot
```{r}
ggplot(data=filter(dat1,ma==1),mapping = aes(x=ra))+geom_density() +
stat_function(fun = dnorm, n = 101, args = list(mean = as.numeric(summary_val[1,2]), sd = as.numeric(summary_val[1,4])), colour = "red") + ggtitle(paste("ma ",1)) + geom_rug(alpha = 1/5)
```
Distribution seems normal distributed.
#### Box-Plot
```{r}
ggplot(data=dat2,mapping = aes(y=ra,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
```
The machine might have some outliers.
#### Q-Q-Plot
```{r}
ggqqplot(data=filter(dat2,ma==1), x = "ra") + ggtitle(paste("ma ",1))
```
Data looks normal distributed, there seems to be one outlier.
## characterize the result of machine 1 with statistical functions
```{r}
summary_val <- dat1 perc. > perc. group_by(ma) perc. > perc. summarise( mean = mean(ra), median = median(ra), std_dev = sd(ra), MAD =mad(ra), skewness=skewness(ra),medcouple= mc(ra), kurtosis= kurtosis(ra),min=min(ra),q25=quantile(ra,0.25),q75=quantile(ra,0.75),max=max(ra))
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Characteristic Value") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
The mean and median seems to be about the same.\
Standard deviation is slightly higher than MAD.\
Skewness seems to be around double of medcouple\
Kurtosis is -1.7 so a flat distribution is expected.\
3. Does the performance comply with the claimed value?\
## first check for normality, if distribution is stationary and for outliers
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
```{r}
summary_val <- dat2 perc. > perc. group_by(ma) perc. > perc. summarise(shapiro_p = shapiro.test(ra)$p.value, kspp_p=kpss.test(ra)$p.value, n_outlier=rosnerTest(ra, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(ra, family="bcPower")$lambda)
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
- normality: H~0~ cant be rejected as p-value is > alpha value -> distribution seems to be normal\
- stationary: H~0~ cant be rejected as p-value is > alpha value -> distribution seems to be stationary\
- outliers: the machine doesnt seem to have any outliers\
- box cox: necessary power for transformation is about 1.57 for machine 1.\
## check per hypothesis testing if current process with ts of 7500rpm is able to achieve the claimed 2micrometers of roughness
H~0~: machine 1 performs better than 2micrometers of roughness
```{r}
# mu is the true value of the mean against the dataset is checked
t.test(filter(dat2,ma==1)[4],mu=2,alternative="greater",var.equals=F,conf.level=0.95)
```
H~0~ cant be rejected. p-value of near 1 is much higher than set alpha value -> machine 1 seems to perform better than 2 micrometers of roughness.
4. Then you compare the performance of the second machine with the first one at the current
process parameter.\
## compare the performance of machine 1 and machine 2 by first screening both machines with previously calculated necessary number of experiments
### Generate "Screening" Test plan
```{r class.source = fold-show}
ma=seq(1,2) # number of machines tested
ts=c(7500) # turning speed numbers
nr=nt # number of replicates
plan3=expand.grid(ma,ts) # generate a base plan
plan3=do.call("rbind", replicate(nr, plan3, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan3=plan3[order(sample(1:nrow(plan3))),] # randomize design
plan3=as.data.frame(plan3) # make sure plan3 is dataframe
names(plan3)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan3,file="plan3.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data for both machines
```{r}
dat3=read.delim("plan3_res.csv",header = T,dec=".", sep = ";")
dat3=transform(dat3,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat3)
```
### compare data of machines visually and look for normality, outliers and if stationary
##### Scatterplot
```{r}
ggplot(data=dat3,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
Machines seem to perform very similar. Data looks unsuspicous.
##### Density Plot
```{r}
ggplot(data=dat3,mapping = aes(x=ra,color=ma)) +geom_density() + geom_rug() + scale_color_manual("Machines",values=c("red", "blue", "green"))
```
Machines seem to perform very similar. Both distributions look normal distributed.
##### Box-Notch Plot
```{r}
ggplot(data=dat3,mapping = aes(y=ra,ma)) + geom_boxplot(notch = TRUE, notchwidth = .5)
```
There might be outliers for machine 2. Performance of both machines could be the same.
##### QQ-Plot
```{r}
ggqqplot(data=dat3, x = "ra", color = "ma") + scale_color_manual(values=c("red", "blue", "green"))
```
Data are normal distributed. There dont seem to be any outliers.
### do hypothesis tests on both machines
#### check for normality, outliers and if distributions are stationary
- Normality with Shapiro Wilk: H~0~ Distribution is normal distributed\
- Stationary with KSPP test: H~0~ Distribution is stationary\
- Outliers with Rosner test.\
The significance level is set to $alpha = 0.05$
```{r}
summary_val <- dat3 perc. > perc. group_by(ma) perc. > perc. summarise(shapiro_p = shapiro.test(ra)$p.value, kspp_p=kpss.test(ra)$p.value, n_outlier=rosnerTest(ra, k = 20, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(ra, family="bcPower")$lambda)
summary_val perc. > perc. mutate_if(is.numeric, format, digits=3,nsmall = 1) perc. > perc.
kbl(.,"html",align = "r",caption = "Statistical Test Results") perc. > perc. kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
- normality: H~0~ cant be rejected for both machines as p-value is > alpha value -> distribution seems to be normal\
- stationary: H~0~ cant be rejected for both machines as p-value is > alpha value -> distribution seems to be stationary\
- outliers: the machines dont seem to have any outliers\
- box cox: necessary power for transformation is about 1.84 for machine 1 and 0.275 for machine 2.\
#### compare distributions of both machines per hypothesis testing
Using welch test assuming difference in variance between distributions.
H~0~ machines 1 and 2 are the same.\
significance level alpha=0.05 \
```{r}
t.test(filter(dat3,ma==1)[4], filter(dat3,ma==2)[4], conf.level = 0.95,var.equal =F)
```
The p-value is above $alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The machine 1 and 2 seem to achieve the same roughness.
5. After having understood the standard process setting performance you want to derive a model
for the first machine describing the performance over the full range of turning speeds. You want
to have the model with a power of 99 perc. and a significance level of 1 perc. \
## first generate screening plan with 2 points (linear) for machine 1
### Generate "Screening" Test plan
```{r class.source = fold-show}
ma=seq(1) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=6 # number of replicates
plan4=expand.grid(ma,ts) # generate a base plan
plan4=do.call("rbind", replicate(nr, plan4, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan4=plan4[order(sample(1:nrow(plan4))),] # randomize design
plan4=as.data.frame(plan4) # make sure plan3 is dataframe
names(plan4)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan4,file="plan4.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data with results for linear regression (2 points) for machine 1
```{r}
dat4=read.delim("plan4_res.csv",header = T,dec=".", sep = ";")
dat4=transform(dat4,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat4)
```
### Inspect results
```{r}
ggplot(data=dat4,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
There seems to be no time drift.
H~0~ data is stationary\
$alpha = 5\ perc. $
```{r}
kpss.test(dat4$ra)
```
$p>alpha \therefore H_0$ cannot be rejected. Thus data can be assumed to be stationary.
```{r}
ggplot(data=dat4,mapping = aes(x=ts,y=ra,color=ma)) + geom_point() + scale_color_manual("Machines",values=c("red", "blue", "green"))
```
There seems to be a turnings speed dependence.
## estimate the necessary number of experiments for power of 99 perc. and sign. level of 1 perc.
### Do a first model for power analysis.\
H~0~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod1<-lm(ra~ts,data = dat4)
summary(mod1)
```
$p<alpha for both intercept and ts \therefore H_0$ has to be rejected. Thus doing a linear model is reasonable.
### Do a power analysis.
```{r}
r2= summary(mod1)$r.squared
f=r2/(1-r2)
uf=1
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2=ceiling(p_res$v+uf+1)
```
For each level `r n2` experiments should be run.
#### generate plan for linear regression with previously estimated number of necessary experiments for each level
```{r class.source = fold-show}
ma=seq(1) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=ceiling(n2/2) # number of replicates for each level (2 levels -> divide by 2)
plan5=expand.grid(ma,ts) # generate a base plan
plan5=do.call("rbind", replicate(nr, plan5, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan5=plan5[order(sample(1:nrow(plan5))),] # randomize design
plan5=as.data.frame(plan5) # make sure plan5 is dataframe
names(plan5)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan5,file="plan5.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat5=read.delim("plan5_res.csv",header = T,dec=".", sep = ";")
dat5=transform(dat5,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat5)
```
### Generate linear regression model with new results
H~0~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod2<-lm(ra~ts,data = dat5)
summary(mod2)
```
$p<alpha for both intercept and ts \therefore H_0$ has to be rejected. Thus doing a linear model is reasonable.
#### Visualize the result
```{r}
ggplot(data=dat5,mapping = aes(x=ts,y=ra,color=ma)) + geom_point()+ geom_smooth(method=lm, formula= y~x, se=T) + scale_color_manual("Machines",values=c("black", "red", "blue", "green")) + labs(title = paste("Adj R2 = ",signif(summary(mod2)$adj.r.squared, 5), "Intercept =",signif(mod2$coef[[1]],5 )," Slope =",signif(mod2$coef[[2]], 5)," P =",signif(summary(mod2)$coef[2,4], 5)))
```
Linear Regression seems to capture the characteristics of the dataset reasonably. Though r^2 is quite low with 0.42 due to large variance in measurement data.
```{r}
ggplot(data=dat5,mapping = aes(x=ts,y=ra,color=ma)) + geom_point()+ geom_smooth(method=lm, formula= y~x, se=T) + scale_color_manual("Machines",values=c("black", "red", "blue", "green")) + stat_regline_equation(label.x = 8000, label.y = 2.3) + stat_cor(label.x = 8000, label.y = 2.2)
```
#### Test the assumptions of the regression
##### Test the normality of the residuals.
Do a qq-plot
```{r}
ggqqplot(mod2$residuals)
```
Residuals seem to be normal distributed. There seem to be some outliers.
do a shapiro-wilk test on the residuals.
H~0~ Data are normal distributed.\
significance level: $alpha=5\ perc. $
```{r}
shapiro.test(mod2$residuals)
```
$p>alpha \therefore H_0$ cannot be rejected.\
Thus the data a normal distributed.\
##### Test the homogeneity of the residuals (Homoscedasticity)\
Do a scatter plot
```{r warning=F}
spreadLevelPlot(mod2)
```
The residuals look like they might be homogeneous.
> H~0~ residuals are homogeneous distributed\
significance level: $alpha=5\ perc. $
```{r}
ncvTest(mod2)
```
$p>alpha \therefore H_0$ cant be rejected.\
Thus the residuals seem to be homogeneous.\
##### Look for high leverage points outliers
Calculate the critical Cooks distance.
```{r}
cd1c=4/length(mod2$residuals)
cd1=abs(cooks.distance(mod2))
subset(cd1, cd1 > cd1c)
```
There might be a high leverage outlier (data point with index 18).
```{r warning=F}
influenceIndexPlot(mod2, vars=c("Cook", "hat"),id=list(n=3))
```
There might be a high leverage outlier at index 18.
##### Check for autocorrelation
```{r}
acf(mod2$residuals)
```
There might be slight autocorrelation (periodicity).
> H~0~ residuals are not autocorrelated\
significance level: $alpha=5\ perc. $
```{r}
durbinWatsonTest(mod2)
```
$p>alpha \therefore H_0$ cannot be rejected.\
Thus the residuals dont seem to be autocorrelated.
##### Testing for Multicollinearity
Testing multicollinearity here makes no sense, because there is only one factor.
```{r}
# vif(mod2)
```
## Compare the two machines with linear regression models for both machines
### generate screening plan
```{r class.source = fold-show}
ma=seq(1,2) # number of machines tested
ts=c(5000,10000) # turning speed numbers
nr=n2 # number of replicates
plan6=expand.grid(ma,ts) # generate a base plan
plan6=do.call("rbind", replicate(nr, plan6, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan6=plan6[order(sample(1:nrow(plan6))),] # randomize design
plan6=as.data.frame(plan6) # make sure plan6 is dataframe
names(plan6)<- c("ma","ts") # name the variables
```
### Write test plan
```{r warning=F,class.source = fold-show}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan6.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan6,file="plan6.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat6=read.delim("plan6_res.csv",header = T,dec=".", sep = ";")
dat6=transform(dat6,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat6)
```
### Inspect results
```{r}
ggplot(data=dat6,mapping = aes(x=time,y=ra,color=ma)) + geom_point() + scale_color_manual(values=c("red", "blue", "green"))
```
Results look similar.
### Do the full model
H~01~ There is no ts dependence.\
H~02~ There is no machine dependence.\
$alpha = 5\ perc. $
```{r}
mod3<-lm(ra~ma*ts,data = dat6)
summary(mod3)
```
There seems to be no machine dependence. Only intercept and ts seem to have an influence on ra. The interaction between machine 2 and ts doesnt seem to matter either.
### Do a reduced model
H~01~ There is no ts dependence.\
$alpha = 5\ perc. $
```{r}
mod3r<-lm(ra~ts,data = dat6)
summary(mod3r)
```
### Compare the two models
H~0~ full model and reduced model have the same quality.\
$alpha = 5\ perc. $
```{r}
anova(mod3r,mod3)
```
$p>alpha \therefore H_0$ cannot be rejected.\
The reduced model seems to capture the characteristic of the dataset as well as the full model.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#############5?
#############5?
# Exercise 1
Your boss has the offer of three new vendors for grinding wheels. However, the offer comes with a
trap. Your boss has to decide by tomorrow morning and you know that each testing needs at least
four hours, i. e. on a single grinding machine you can have maximum two different grinding wheel
runs. Set up a plan so that you can tell your boss tomorrow morning if the existing grinding wheels
(1), the one of vendor A (2), the one of vendor B (3), or the one of vendor C (4) is best. Or if it makes
nearly no difference. The standard deviation in the performance is known to be about 0.15 and a
typical performance value (pv) is 3.13. The targeted performance should be at least 10perc better with
95perc certainty. You are allowed to use as up to 20 machines (machines: 1, 2, 3, 4 …). Generate a test
plan (with the structure 1. row Matrikelnumber, 2. Row: column names, following rows the plan with
the columns: machine (ma), grinding wheel/product tested (gw)), run the experiments with
Ex5T1.exe. And analyse the results.
## first do a power analysis to determine how many runs are necessary per grinding wheel
as we have more than two groups we need to choose the anova for power test (4 groups of grinding wheels compared over 1 factor -> performance -> one way anova)
```{r}
sde=0.15
md=3.13
del=md*.1/sde
n1=pwr.anova.test(k=4,n=NULL,f=del,sig.level = 0.05,power = 0.95) #k=number of groups = 4 grinding wheels
```
At least `r ceiling(n1$n)` are needed.
## create a test plan based on balanced incomplede block design as time is sparse
```{r}
bs = 2 # Block size (how many runs can be done in the given time per block? 2 runs per block: each machine is a block)
gw = 4 # number of products/grinding wheels to be compared
bd=bibd(v=gw,k=bs) # Balanced Incomplete Block Design; v=number of products, k=block size (how many runs can be done per block in given time)
for(i in seq(1,length(bd[,1]))){bd[i,]=sample(bd[i,],length(bd[i,]))}# randomize within a block
plan1=rbind(cbind(seq(1,length(bd[,1])),bd[,1]),cbind(seq(1,length(bd[,2])),bd[,2]))
colnames(plan1)<-c("ma","gw")
```
resulting bibd uses 6 machines to analyze the performance of 4 grinding wheels with 2 runs per block/machine.
Every product will be tested 3 times on different machines.
### Write test plan
```{r warning=F,class.source = 'fold-show'}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
dat1=transform(dat1,gw=as.factor(gw)) # transform the machine number from a numerical to a factor!
head(dat1)
```
## analyze the results of each grinding wheel
H~01~ performance is time independent\
H~02~ performance is machine independent\
H~03~ performance is grinding wheel independent\
significance level: $\alpha=5\perc$
```{r}
mod51=lm(pv~time+ma+gw,dat1)
summary(mod51)
```
$p>\alpha \forall \backslash grinding wheel 2 \therefore H_0$ only grinding wheel 2 makes a significant difference.
## analyze characteristic values
```{r}
summary_val <- dat1 perc>perc group_by(gw)perc>perc summarise( mean = mean(pv), median = median(pv), std_dev = sd(pv), MAD =mad(pv),min=min(pv),max=max(pv))
summary_val perc>perc mutate_if(is.numeric, format, digits=3,nsmall = 1) perc>perc
kbl(.,"html",align = "r",caption = "Characteristic Value") perc>perc kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
grinding wheel 2 seems to perform best. Standard deviation of grinding wheel 2 is also lowest.
```{r}
ggplot(data=dat1,mapping = aes(y=pv,gw)) + geom_boxplot(notch = F)
```
## do statistical tests on performance of grinding wheel 2 as this seems to perform the best (compare grinding wheel 2 to old grinding wheel 1)
H~0~ the true difference of grinding wheel 2 is larger or equal `r .1*mean(filter(dat1,gw==1)$pv)`\ -> grinding wheel perform 10perc. better than old grinding wheel 1
significance level: $\alpha=5\perc$
```{r}
t.test(x=filter(dat1,gw==2)$pv,y=filter(dat1,gw==1)$pv, mu=.1*mean(filter(dat1,gw==1)$pv), alternative = "less",paired=F, conf.level = 0.95)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Therefore we can assume that grinding wheel 2 is at least 10 percent better than grinding wheel 1.
A test of the assumptions is not reasonable, because with three data points a test for normality etc. makes no sense (no replications in test plan).
After all experiments were run someone said, that actually a
longer time would have been available. Do set up a test plan that works assuming that you have five
times available (you do not have to use up all the time you have)
## do a full block design (full factorial with blocks) as there is no time limit
Since one wants at least three replications, we choose 3 machines to test the four grinding wheels.
```{r}
gwtest<-factor(rep(sample(seq(1,4),4),3)) # generate a test vector by randomizing (sample) the four grinding wheels on the 3 machines.
block<-factor(rep(seq(1,3),each=4)) # write a factor vector for the machine names.
plan<-data.frame(ma=block,gw=gwtest) # put the two vectors together to a plan
plan
```
alternative approach to get the randomize complete block design using the library agricolae
```{r}
gw<-seq(1,4) # grinding wheels
outside<-design.rcbd(gw,3,seed=11) # generate randomized test plan for grinding wheels with 3 blocks/machines
rcb<-outside$book[2:ncol(outside$book)] # dismiss first column as "plots" column isnt necessary
levels(rcb$block)<-c("1","2","3") # name the blocks/machines
colnames(rcb)[1] <- "ma" #rename first column from "blocks" to ma
rcb
```
### Write test plan
```{r warning=F,class.source = 'fold-show'}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="planCompleteBlock.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(rcb,file="planCompleteBlock.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
datCompleteBlock=read.delim("planCompleteBlock_res.csv",header = T,dec=".", sep = ";")
datCompleteBlock=transform(datCompleteBlock,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
datCompleteBlock=transform(datCompleteBlock,gw=as.factor(gw)) # transform the machine number from a numerical to a factor!
head(datCompleteBlock)
```
#Exercise 2
You have a machine Ex5T2.exe which is controlled via a parameter that is allowed to vary between
1000 and 1500. The goal is to find the parameter of optimal performance with a minimum number of
experiments. Follow a strategy of at least two steps.
Set up a test plans to find the optimum and write the plan to a csv file that has your Matrikelnummer
as a first line, the level name as a second line and then numbers of the plan in the following lines
(Since you have only one factor the whole file has only one column).
## create first test plan for screening with 3 levels (optimization)
```{r}
nparam <- 3
lmax=1500
lmin=1000
levels <- seq(lmin,lmax,(lmax-lmin)/(nparam-1))
lvlsamp <- sample(levels,nparam)#Randomize
plan <- data.frame(para=lvlsamp)
write.table(matrikelnumber, file="plan21.csv", sep=";", dec=".", row.names=F, col.names=F,append=F)
write.table(plan, file="plan21.csv", sep=";", dec=".", row.names=F, col.names=T,append=T)
```
## Read data
```{r}
dat21 <- read.csv("plan21_res.csv", sep=";", dec=".")
head(dat21)
```
## set up quadratic model to find first optimum from 3 points## set up a quadratic model
```{r}
mod1=lm(pv~poly(para, degree=2, raw=T),data=dat21)
summary(mod1)
```
as we only have 3 points in the measurement, the quadratic model fits perfectly, thus r^2 is 1.
## estimates the position of the maximum/optimum
```{r}
pma1=as.double(-mod1$coefficients[2]/(2*mod1$coefficients[3]))
```
The maximum is estimated to be around `r pma1`.
## Write a second plan optimizing around the first estimated maximum/optimum
```{r warning=F}
nparam <- 3
lmax=pma1+250/3
lmin=pma1-250/3
levels <- seq(lmin,lmax,(lmax-lmin)/(nparam-1))
lvlsamp <- sample(levels,nparam)#Randomize
plan <- data.frame(para=lvlsamp)
write.table(matrikelnumber, file="plan22.csv", sep=";", dec=".", row.names=F, col.names=F,append=F)
write.table(plan, file="plan22.csv", sep=";", dec=".", row.names=F, col.names=T,append=T)
```
## Read the results of the second machine run
```{r}
dat22 <- read.csv("plan22_res.csv", sep=";", dec=".")
head(dat22)
```
## analyse results
```{r}
mod2a=lm(pv~poly(para, degree=2, raw=T),data=dat22)
summary(mod2a)
```
Using the linear regression estimates the position of the maximum.
```{r}
pma2a=as.double(-mod2a$coefficients[2]/(2*mod2a$coefficients[3]))
```
## combine dataset from first screening run and second run to estimate optimum
```{r}
datt2=rbind(dat21,dat22)
mod2=lm(pv~poly(para, degree=2, raw=T),data=datt2)
summary(mod2)
```
Using the linear regression estimates the position of the maximum.
```{r}
pma2=as.double(-mod2$coefficients[2]/(2*mod2$coefficients[3]))
```
There is a small shift to `r pma2` when combining the runs to estimate maximum with more points.
Extract R^2^ for estimating necessary number of experiments to be 1 percent sure.
```{r}
datt2_r2=summary(mod2)$r.squared
```
Estimate the number of replications/replicates needed to be 1perc sure.
```{r}
r2=datt2_r2
f=r2/(1-r2)
uf=2 # since we have two parameter + the intercept
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
nrep=ceiling(p_res$v+uf+1)
```
The estimated number of runs is `r nrep`.
## A last plane with estimated number of runs to be 1perc sure
```{r warning=F}
nparam <- 5
repl <- nrep
lmax=pma2+250/9
lmin=pma2-250/9
levels <- rep(seq(lmin,lmax,(lmax-lmin)/(nparam-1)),repl)
lvlsamp <- sample(levels,nparam*repl)#Randomize
plan <- data.frame(para=lvlsamp)
write.table(matrikelnumber, file="plan23.csv", sep=";", dec=".", row.names=F, col.names=F,append=F)
write.table(plan, file="plan23.csv", sep=";", dec=".", row.names=F, col.names=T,append=T)
```
Read the results.
```{r}
dat23 <- read.csv("plan23_res.csv", sep=";", dec=".")
head(dat23)
```
```{r}
mod3a=lm(pv~poly(para, degree=2, raw=T),data=dat23)
summary(mod3a)
```
Using the linear regression estimates the position of the maximum.
```{r}
pma3a=as.double(-mod3a$coefficients[2]/(2*mod3a$coefficients[3]))
```
There is a small shift to `r pma4a`.
```{r}
datt3=rbind(datt2,dat23)
mod3=lm(pv~poly(para, degree=2, raw=T),data=datt3)
summary(mod3)
```
Using the linear regression estimates the position of the maximum.
```{r}
pma3=as.double(-mod3$coefficients[2]/(2*mod3$coefficients[3]))
```
There is a small shift to `r pma4`.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#############6?
#############6?
### Generate a factorial design (with two blocks)
An example how to do it with an internal routine
```{r}
FrF2(nrun=16,nfactors=4,blocks=c("Tech","Machine"),factor.names=list(Tech=c("T1 ","T2 "), Machine=c("ma1","ma2"),
Pres="",Temp=""), default.levels=c("low","high"),replications = 3, alias.block.2fis=TRUE)
```
How to do it with expand grid
```{r}
ma=seq(1,2) # machine numbers
tech=c(1,2) # technicians
temp=c(160,170) # temperatures
pres=c(700,800) # pressures
nr=3 # number of replicates
plan1=expand.grid(ma,tech,temp,pres) # generate a base plan
plan1=do.call("rbind", replicate(nr, plan1, simplify=F)) # replicate the base plan
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1=as.data.frame(plan1) # make sure plan1 is dataframe
names(plan1)<- c("ma","tech","temp","pres") # name the variables
```
### Write test plan
```{r warning=F,class.source = 'fold-show'}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### Read data
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
dat1=transform(dat1,tech=as.factor(tech)) # transform the technical number from a numerical to a factor!
dat1=transform(dat1,temp=as.double(temp)) # transform the temperate from integer to double
dat1=transform(dat1,pres=as.double(pres)) # transform the pressure number from integer to double
head(dat1)
```
### Visualize data
#### Scatterplot
```{r}
ggplot(data=dat1,mapping = aes(x=time,y=pv)) + geom_point()
```
No time drift is seen.
KSPP test: H~0~ Distribution is stationary\
The significance level is set to $\alpha = 0.05$
```{r}
kpss.test(dat1$pv)
```
H~0~ cannot to be rejected since ($p>\alpha$), i.e. it is stationary.
#### Effects
```{r warning=F}
scatterplotMatrix(~time+ma+tech+temp*pres,id=list(n=5),data=dat1) # scatterplot matrix
```
#### Interactions
```{r}
par(mfrow = c(2,3))
interaction.plot(dat1$ma,dat1$tech,dat1$pv,ylab="pv",xlab="mach")
interaction.plot(dat1$ma,dat1$temp,dat1$pv,ylab="pv",xlab="mach")
interaction.plot(dat1$ma,dat1$pres,dat1$pv,ylab="pv",xlab="mach")
interaction.plot(dat1$tech,dat1$temp,dat1$pv,ylab="pv",xlab="tech")
interaction.plot(dat1$tech,dat1$pres,dat1$pv,ylab="pv",xlab="tech")
interaction.plot(dat1$temp,dat1$pres,dat1$pv,ylab="pv",xlab="temp")
```
## Build a model with blocked out technicians and machine
```{r}
mod1=lm(pv~ma+tech+temp*pres,dat1)
summary(mod1)
```
$p<\alpha$ for temperate and pressure $\therefore H_0$ these two factors make a signifacant difference.\
Perhaps we should also double check on the technicians.
A model without blocking. (assuming that the technicans and machine make no difference)
```{r}
mod1a=lm(pv~temp*pres,dat1)
summary(mod1a)
```
One gets a different result as before.
#### Effect Plots
```{r}
MEPlot(mod1)
```
pressure has the largest effect
#### Interaciton Plots
```{r}
IAPlot(mod1)
```
Build a model with blocked out technicians without time as a factor
```{r}
mod1b=lm(pv~tech+temp*pres,dat1)
summary(mod1b)
```
It seems that we can leave the time out as a factor.
H~0~ the models are equally good\
significance level 5perc\
```{r}
anova(mod1,mod1b)
```
$p>5\perc \therefore H_0$ cannot be rejected
Estimate the effect size.
```{r}
ep=((sum(dat1$pv[dat1$pres==max(dat1$pres)])- sum(dat1$pv[dat1$pres==min(dat1$pres)])))/2
et=((sum(dat1$pv[dat1$temp==max(dat1$temp)])- sum(dat1$pv[dat1$temp==min(dat1$temp)])))/2
sp=sd(dat1$pv[dat1$pres==max(dat1$pres)])+sd(dat1$pv[dat1$pres==min(dat1$pres)])
st=sd(dat1$pv[dat1$temp==max(dat1$temp)])+sd(dat1$pv[dat1$temp==min(dat1$temp)])
dp=ep/sp
dt=et/sp
```
The estimated effect size is `r dp` and `r dt`.
```{r}
size.anova("axb",a=2,b=2,alpha=0.05,delta=2.8 , beta=0.05,case="maximin")
```
Instead of setting up a block design doing a full factorial design
```{r warning=F}
plan2=fac.design(factor.names=list(ma=c(1,2),tech=c(1,2),temp=c(160,170), pres=c(700,800)),replications =3 , randomize = T)
plan2=subset(plan2, select = -c(Blocks) ) # drop the not needed Blocks column
```
Write test plan
```{r warning=F}
#Write Matrikelnummer
write.table(1, file="plan2.csv", sep=";", dec=".", row.names=F, col.names=F,append=F)
#write Testplan
write.table(plan2, file="plan2.csv", sep=";", dec=".", row.names=F, col.names=T,append=T)
```
Read "Measured" data
```{r}
dat1a = read.delim("plan2_res.csv", header = T,sep = ";", dec = ".")
head(dat1a)
```
But we forgot to put machine and product as a factor.
```{r}
dat1a=transform(dat1a,ma=as.factor(ma))
dat1a=transform(dat1a,tech=as.factor(tech))
head(dat1a)
```
```{r}
mod1c=lm(pv~time+ma+tech+temp*pres,dat1a)
summary(mod1c)
```
$p<\alpha$ for temperate and pressure $\therefore H_0$ these two factors make a signifacant difference.\
Perhaps we should also double check on the technicians.
```{r}
mod1d=lm(pv~tech+time+temp+pres,dat1a)
summary(mod1d)
```
```{r}
mod1e=lm(pv~temp+pres,dat1a)
summary(mod1e)
```
```{r}
anova(mod1c,mod1e)
```
The models are equally fine.
## find the optimum model via BIC
```{r}
stepm<-stepAIC(mod1c,k=log(nrow(dat1a)),direction = "both")
```
## double check replication number
```{r}
epa=((sum(dat1a$pv[dat1a$pres==max(dat1a$pres)])- sum(dat1$pv[dat1a$pres==min(dat1a$pres)])))/2
eta=((sum(dat1a$pv[dat1a$temp==max(dat1a$temp)])- sum(dat1$pv[dat1a$temp==min(dat1a$temp)])))/2
spa=sd(dat1a$pv[dat1a$pres==max(dat1a$pres)])+sd(dat1a$pv[dat1a$pres==min(dat1a$pres)])
sta=sd(dat1a$pv[dat1a$temp==max(dat1a$temp)])+sd(dat1a$pv[dat1a$temp==min(dat1a$temp)])
dpa=epa/spa
dta=eta/spa
```
The estimated effect size is `r dpa` and `r dta`.
```{r}
na=size.anova("axb",a=2,b=2,alpha=0.05,delta=2.8 , beta=0.05,case="maximin")
na
```
There are `r na` experiments per factor level needed.
## 3D vizualize the results
```{r}
with(dat1a,scatterplot3d(dat1a$temp,dat1a$pres,dat1a$pv, xlab="Temperatur", ylab="Pressure", zlab="Measured", color="darkblue"))
```
```{r}
bplot(rms::Predict(ols(pv~temp*pres,dat1a), temp=160:170, pres=seq(700,800,10)), lfun=wireframe, drape=TRUE)
```
## Test the assumptions of the model
### Test the normality of the residuals.
#### Do a qq-plot
```{r}
ggqqplot(mod1e$residuals)
```
Residuals seem to be nearly normal distributed, but there are some deviations.
#### Do a Shaprio Wilk Test
>H~0~ Data are normal distributed.\
significance level: $\alpha=5\perc$\
```{r}
shapiro.test(mod1e$residuals)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the data a normal distributed.\
### Test the homogeneity of the residuals (Homoscedasticity)\
#### Do a spread level plot
```{r warning=F}
spreadLevelPlot(mod1e)
```
The residuals look homogeneous. There might be one large value.
#### do hypothesis test
>H~0~ residuals are homogeneous distributed\
significance level: $\alpha=5\perc$
```{r}
ncvTest(mod1e)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are homogeneous.\
### Look for leverage points outliers
#### Calculate the critical Cooks distance.
```{r}
cd1c=4*2/length(mod1e$residuals)
cd1=abs(cooks.distance(mod1e))
subset(cd1, cd1 > cd1c)
```
There might be one high leverage point.
#### do InfluenceIndexPlot
```{r}
influenceIndexPlot(mod1e, vars=c("Cook", "hat"),id=list(n=3))
```
There might one high leverage outliers.
### Check for autocorrelation
#### Do an auto correlation plot
```{r}
acf(mod1e$residuals)
```
There seems to be low auto correlation in the residuals.
#### do a Durbin Watson Test
> H~0~ residuals are not autocorrelated\
significance level: $\alpha=5\perc$
```{r}
durbinWatsonTest(mod1e)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals show no auto correlation.\
### Testing for Multicollinearity
#### do a Multicollinearity test
> H~0~ Data are not multicollinar\
significance level: $\alpha=5\perc$\
```{r}
vif(mod1e)
```
all values are below 4, i.e. there seems to be no problem.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.