size.anova8: Design of Experiments for ANOVA

Description Usage Arguments Details Value Note Author(s) References Examples

Description

This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.

Usage

1
2
size.anova(model, hypothesis = "", assumption = "",
    a = NULL, b = NULL, c = NULL, n = NULL, alpha, beta, delta, cases)

Arguments

model

A character string describing the model, allowed characters are (>x) and the letters abcABC, capital letters stand for random factors, lower case letters for fixed factors, x means cross classification, > nested classification, brackets () are used to specify mixed model, the term in brackets has to come first. Spaces are allowed.

Examples: One-Way fixed: a, Two-Way: axB, a>b, Three-Way: axbxc, axBxC, a>b>c, (axb)>C, ...

hypothesis

Character string describiung Null hypothesis, can be omitted in most cases if it is clear that a test for no effects of factor A is performed, "a".

Other possibilities: "axb", "a>b", "c" and some more.

assumption

Character string. A few functions need an assumption on sigma, like "sigma_AB=0,b=c", see the referenced book until this page is updated.

a

Number of levels of fixed factor A

b

Number of levels of fixed factor B

c

Number of levels of fixed factor C

n

Number of Observations

alpha

Risk of 1st kind

beta

Risk of 2nd kind

delta

The minimum difference to be detected

cases

Specifies whether the "maximin" or "maximin" sizes are to be determined.

Details

see chapter 3 in the referenced book

Value

named integer giving the desired size(s)

Note

Depending on the selected model and hypothesis omit one or two of the sizes a, b, c, n. The function then tries to get its optimal value.

Author(s)

Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang

References

Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="minimin")

size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")

size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")

size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="minimin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")





























## Not run: 










#########8##
You get a new machine into your company. You have five factors that can be manipulated between 0
and 2. And you assume that interactions between two factors can be relevant. However, you are sure
that three factor interaction do not play any role. You are asked to run a minimum of tests for the
start, but to have at least 3 replications

## 8.1.1 What is the right resolution for this problem?
5 factors that can be manipulated. Two-fold interactions are relevant, three-fold interactions are not relevant -> resolution should be at least 5, because with a resolution of 4 still the twofold interactions are confounded (2*2=4).
With a resolution of 5 and 5 factors with 2 levels, the necessary number of runs is 2^(5-1)=16.
## 8.1.2 How many experiments do you need?
## 8.1.3 Set up a test plan to investigate the machine and write the plan to a csv file that has your Matrikelnummer prior to the plan.
## 8.1.5 Analyse the new performance data. (1 model) -> linear model
## 8.1.6 Find the smallest reasonable model
## 8.1.7 Verify that this smallest reduced model is sufficient with a second method (ANOVA)
## 8.1.8 Estimate the number of experiments to have errors below 1proz
## OPTIONAL: What happens when the resolution is too low?













size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="minimin")

size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")

size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")

size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="minimin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")





## 8.1.1 What is the right resolution for this problem?
5 factors that can be manipulated. Two-fold interactions are relevant, three-fold interactions are not relevant -> resolution should be at least 5, because with a resolution of 4 still the twofold interactions are confounded (2*2=4).
With a resolution of 5 and 5 factors with 2 levels, the necessary number of runs is 2^(5-1)=16.

## 8.1.2 How many experiments do you need?
```{r}
nex=nrow(FrF2(resolution = 5, nfactors=5,clear=TRUE, res3=TRUE))
```
The number of experiments is `r nex`.

## 8.1.3 Set up a test plan to investigate the machine and write the plan to a csv file that has your Matrikelnummer prior to the plan.
Generate a fractional factorial plan.
```{r}
nr=3 #at least 3 replications stated.
plan1=FrF2(nex,5,replication=nr,default.levels = c(0, 2),randomize = T)
```

Write test plan to file
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan_81.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan_81.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```

```{r}
dat1 = read.delim("plan_81_res.csv", header = TRUE,sep = ";", dec = ".")
# head(dat1)
```

#### have a first look at the data
```{r}
head(dat1)
```

#### Check class of variables
```{r}
map_df(dat1, class) proz>proz kbl(.,"html") proz>proz   kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```

#### check if there is an NA for any machine
```{r}
dat1 proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```

### Have first glance at the data

#### Scatter Plot
```{r fig.height=9}
dat1 proz>proz ggplot(data=.,mapping = aes(x=time,y=measured)) +  geom_point() + ggtitle("Scatterplot for Machine")
```

The data show no suspicious elements in the scatterplot. There doesn't seem to be any time drift.

H~0~ Distribution is stationary\
The significance level is set to  $\alpha = 5\proz$

```{r warning=F}
summary_kpss <- dat1 proz>proz  summarise(kpss_p=kpss.test(measured)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
  kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz   kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) 
```

H~0~ cannot be rejected because ($p>\alpha$ ).\
Data seem to be stationary.

```{r message=F}
my_fn <- function(data, mapping, ...){
  p <- ggplot(data = data, mapping = mapping) + 
    geom_point() + 
    geom_smooth(method=lm, fill="blue", color="blue", ...)
  p
}
dat1proz>proz ggpairs(., lower = list(continuous = my_fn))
```
There seems to be a large Effect from factors A and B on the measured value. C,D,E don't seem to have an effect on measured.

## 8.1.5 Analyse the new performance data. (1 model) -> linear model
H~00~: Time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: C has no effect\
H~04~: D has no effect\
H~05~: E has no effect\
H~06~: time*A has no effect\
H~07~: time*B has no effect\
H~08~: time*C has no effect\
H~09~: time*D has no effect\
H~10~: time*E has no effect\
H~11~: A*B has no effect\
H~12~: A*C has no effect\
H~13~: A*D has no effect\
H~14~: A*E has no effect\
H~15~: B*C has no effect\
H~16~: B*D has no effect\
H~17~: B*E has no effect\
H~18~: C*D has no effect\
H~19~: C*E has no effect\
H~20~: D*E has no effect\
significance level  $\alpha=0.05$\
```{r}
fullmodel=lm(measured~.^2,data=dat1) # linear model including all two-fold factor interactions (.^3 would include three-fold interactions, but only two-fold is of interest)
summary(fullmodel)
```
For nearly all effect and interactions with p>$\alpha$ the Null Hypothesis cannot be rejected.
Only for H~01~, H~02~, H~06~, H~11~ this is not the case. The p-value of H~07~ is very close to alpha and should be investigated further.

#### visualize effects and interactions
```{r}
dat <- dat1[-1]
fullmodel=lm(measured~.^2,data=dat) # linear model including all two-fold factor interactions (.^3 would include three-fold interactions, but only two-fold is of interest)
summary(fullmodel)
```

```{r}
MEPlot(fullmodel)
```
A and B have large effect. And C, D and E seem to be less relevant.

```{r}
IAPlot(fullmodel)
```
Only the interaction of A and B seems to be relevant.

## 8.1.6 Find the smallest reasonable model
### manually reduce model
Check with the BIC, if time and factors C,D,E might be needed in a reduced model.
```{r}
stepAIC(fullmodel,k=log(nrow(dat1)),direction = "both",trace = 0)
```
Time can't be eliminated as the two-fold interaction time:B seems to be important for the model. C,D,E can be eliminated as they don't appear in the reduced model of the BIC.

```{r}
dat1<-dat1[c(-4,-5,-6)]
```

Rerun the above model without C,D,E:
H~00~: time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: time:A has no effect\
H~04~: time:B has no effect\
H~05~: A:B has no effect\
significance level  $\alpha=0.05$\
```{r}
reducModel1=lm(measured~.^2,data=dat1) # linear model including all two-factor interactions
summary(fullmodel)
```
All Null-Hypoth. except H~00~ and H~03~ need to be rejected.

Reduce model by removing interaction time:A but keeping interaction time:B:
H~00~: time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: time:B has no effect\
H~04~: A:B has no effect\
significance level  $\alpha=0.05$\
```{r}
reducModel2=lm(measured~time+A+B+time*B+A*B,data=dat1) # linear model including all two-factor interactions
summary(fullmodel)
```
All Null-Hypothesis need to be rejected except H~00~ as p(H~00~)>alpha. 

compare manually reduced model with fullmodel:
```{r}
anova(fullmodel,reducModel2)
```

### automatically reduce model
find optimal model using AIC.
```{r}
stepa<-stepAIC(fullmodel,direction = "both",k=2,trace=0)
stepa$anova
```
find optimal model using BIC
```{r}
stepm<-stepAIC(fullmodel,direction = "both",k=log(nrow(dat1)),trace=0)
stepm$anova
```
The optimum model following the BIC is: measured ~ time + A + B + time:B + A:B

## 8.1.7 Verify that this smallest reduced model is sufficient with a second method (ANOVA)
Setup a reduced model:
H~01~: time has no effect\
H~02~: A has no effect\
H~03~: B has no effect\
H~04~: time:B has no effect\
H~05~: A:B has no effect\
significance level  $\alpha=0.05$\
```{r}
model1=lm(measured ~ time + A + B + time:B + A:B ,data=dat1) # linear model including all factor interaction
summary(model1)
```
All hypothesis cannot be rejected, because p>0.05.

H~0~:$model1$ has same predictive value as the $fullmodel$ \
significance level  $\alpha=0.05$\
```{r}
anova(model1,fullmodel) # comparing Reduced model with full model
```
$\because p>\alpha \Rightarrow$, I cannot reject H~0~.\
The models seem to perform equally good.

## 8.1.8 Estimate the number of experiments to have errors below 1proz
Estimate the number of experiments per level.
```{r}
r2=summary(model1)$r.squared
f=r2/(1-r2)
uf=5 # (6 factors and interactions and intercept - 1)
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2=ceiling(p_res$v+uf+1)
```
The estimation for number of experiments/total samples needed is `r n2`.

A second power analysis
```{r}
de1=as.data.frame(abs(coefficients(model1))/coef(summary(model1))[, "Std. Error"])  proz>proz filter(row_number() >= 2)
de1<-de1/sqrt(nr)
colnames(de1)<-c("delta")
del_es<-de1 proz>proz min()
del_es=min(del_es,3)proz>prozsignif(., digits = 4) # size.anova does not work for to small delta
r2=summary(model1)$adj.r.squared
f=r2/(1-r2)
del_r2=2*sqrt(f/nrow(dat1))
np=size.anova("axb",a=2,b=2,alpha=0.01,delta=del_es , beta=0.01,case="maximin")
np
```

The number of experiments/number of samples is `r np`.
```{r}
del_es
del_r2
```
del_es and del_r2 are the number of replications necessary.

## 8.1.9 Verify the assumptions made for the last model.
### Test the normality of the residuals.
#### Do a qq-plot
```{r}
ggqqplot(model1$residuals)
```
Residuals seem to be nearly normal distributed, but there are some deviations.

#### Shaprio Wilk Test for normality of residuals
H~0~ Residuals are normal distributed.\
significance level: $\alpha=5\proz$\
```{r}
shapiro.test(model1$residuals)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are normal distributed.\

### Test the homogenity of the residuals (Homoscedasticity)\
#### spread-level-plot
```{r warning=F}
spreadLevelPlot(model1)
```
The residuals look homogeneous.


#### hypothesis test for homogenity
H~0~ residuals are homogeneous distributed\
significance level: $\alpha=5\proz$

```{r}
ncvTest(model1)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are homogeneous.\

### Look for high leverage outliers
#### Calculate the critical Cooks distance.
```{r}
cd1c=4*2/length(model1$residuals)  #corrected by dimension of model (quadratic=2)
cd1=abs(cooks.distance(model1))
subset(cd1, cd1 > cd1c)
```
There seem to be some high leverage outliers

#### do InfluenceIndexPlot
```{r warning=F}
influenceIndexPlot(model1, vars=c("Cook", "hat"),id=list(n=3))
```
There seem to be some high leverage outliers e.g. Index 4, 11, 23.

### Check for autocorrelation
#### acf plot
```{r}
acf(model1$residuals)
```
There seems to be slight auto correlation in the residuals.

#### do a Durbin Watson Test
H~0~ residuals are not autocorrelated\
significance level: $\alpha=5\proz$

```{r}
durbinWatsonTest(model1)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals show no auto correlation.\

### Testing for Multicollinearity
#### Do a generalized pairs plot to spot correletations
```{r , message=F}
ggpairs(model1)
```
no correlation between the variables is seen.

####  do a Multicollinearity test
H~0~ Data are not multi collinar\
```{r}
vif(model1)
```
All values except for B and time:B are below 4
All vif values are below 10, i.e. there are no serious multicollinearity problems.

```{r}
library(performance)
check_collinearity(model1)
```
there seems to be moderate correlation for B and time:B.


```{r}
library(mctest)
omcdiag(model1)
imcdiag(model1)
```

## OPTIONAL: What happens when the resolution is too low?

If we choose: Resolution 3\
The model we target for is something like:\
$𝑦\sim 𝑥_0+𝑥_1 𝐴+𝑥_2 𝐵+𝑥_3 𝐶+𝑥_4 𝐷+𝑥_5 𝐸+𝑥_6 𝐴𝐵+𝑥_7 𝐴𝐶$\
However, if we do not specify anything R might choose other interactions.

```{r}
nexa=nrow(FrF2(resolution = 3, nfactors=5,clear=TRUE, res3=TRUE))
```
The number of experiments is `r nexa`.

Generate a fractional factorial plan.
```{r}
plan1a=FrF2(nexa,5,replication=3,default.levels = c(0, 2),randomize = T)
```

Write test plan to file
```{r echo=F, message=F, warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan_81a.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1a,file="plan_81a.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```

Read data
```{r}
dat1a = read.delim("plan_81a_res.csv", header = TRUE,sep = ";", dec = ".")
# head(dat1a)
dat1a<-dat1a[-1] # eliminate time
```

#### have a first look at the data
```{r}
datatable(dat1a)
```

#### Check class of variables
```{r}
map_df(dat1a, class) proz>proz kbl(.,"html") proz>proz   kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```

#### check if there is an NA for any machine
```{r}
dat1a proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
Carry out a Linear Model\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: C has no effect\
H~04~: D has no effect\
H~05~: E has no effect\
H~06~: A*B has no effect\
H~07~: A*C has no effect\
H~08~: A*D has no effect\
H~09~: A*E has no effect\
H~010~: B*C has no effect\
H~011~: B*D has no effect\
H~012~: B*E has no effect\
H~013~: C*D has no effect\
H~014~: C*E has no effect\
H~015~: D*E has no effect\
significance level  $\alpha=0.05$\
```{r}
fullmodela=lm(measured~.^2,data=dat1a) # linear model including all factor interaction
summary(fullmodela)
```
Since the resolution is insufficient the interactions are not resolved.

```{r}
MEPlot(fullmodela)
``'
Since the effect D is confounded with the interaction A:B is seems that D has a effect despite the fact that it does not.


 
















size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
      alpha=0.05,beta=0.1, delta=2, case="minimin")

size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="maximin")

size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4, 
           alpha=0.05,beta=0.1, delta=1, cases="minimin")

size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
           assumption="sigma_AC=0,b=c",a=6,n=2,
           alpha=0.05, beta=0.1, delta=0.5, cases="minimin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")

size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4, 
           alpha=0.05, beta=0.1, delta=0.5, case="minimin")










## End(Not run)

maccaveli/e1072 documentation built on Feb. 13, 2022, 10:41 p.m.