Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
#########8##
You get a new machine into your company. You have five factors that can be manipulated between 0
and 2. And you assume that interactions between two factors can be relevant. However, you are sure
that three factor interaction do not play any role. You are asked to run a minimum of tests for the
start, but to have at least 3 replications
## 8.1.1 What is the right resolution for this problem?
5 factors that can be manipulated. Two-fold interactions are relevant, three-fold interactions are not relevant -> resolution should be at least 5, because with a resolution of 4 still the twofold interactions are confounded (2*2=4).
With a resolution of 5 and 5 factors with 2 levels, the necessary number of runs is 2^(5-1)=16.
## 8.1.2 How many experiments do you need?
## 8.1.3 Set up a test plan to investigate the machine and write the plan to a csv file that has your Matrikelnummer prior to the plan.
## 8.1.5 Analyse the new performance data. (1 model) -> linear model
## 8.1.6 Find the smallest reasonable model
## 8.1.7 Verify that this smallest reduced model is sufficient with a second method (ANOVA)
## 8.1.8 Estimate the number of experiments to have errors below 1proz
## OPTIONAL: What happens when the resolution is too low?
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## 8.1.1 What is the right resolution for this problem?
5 factors that can be manipulated. Two-fold interactions are relevant, three-fold interactions are not relevant -> resolution should be at least 5, because with a resolution of 4 still the twofold interactions are confounded (2*2=4).
With a resolution of 5 and 5 factors with 2 levels, the necessary number of runs is 2^(5-1)=16.
## 8.1.2 How many experiments do you need?
```{r}
nex=nrow(FrF2(resolution = 5, nfactors=5,clear=TRUE, res3=TRUE))
```
The number of experiments is `r nex`.
## 8.1.3 Set up a test plan to investigate the machine and write the plan to a csv file that has your Matrikelnummer prior to the plan.
Generate a fractional factorial plan.
```{r}
nr=3 #at least 3 replications stated.
plan1=FrF2(nex,5,replication=nr,default.levels = c(0, 2),randomize = T)
```
Write test plan to file
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan_81.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1,file="plan_81.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
```{r}
dat1 = read.delim("plan_81_res.csv", header = TRUE,sep = ";", dec = ".")
# head(dat1)
```
#### have a first look at the data
```{r}
head(dat1)
```
#### Check class of variables
```{r}
map_df(dat1, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
#### check if there is an NA for any machine
```{r}
dat1 proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
### Have first glance at the data
#### Scatter Plot
```{r fig.height=9}
dat1 proz>proz ggplot(data=.,mapping = aes(x=time,y=measured)) + geom_point() + ggtitle("Scatterplot for Machine")
```
The data show no suspicious elements in the scatterplot. There doesn't seem to be any time drift.
H~0~ Distribution is stationary\
The significance level is set to $\alpha = 5\proz$
```{r warning=F}
summary_kpss <- dat1 proz>proz summarise(kpss_p=kpss.test(measured)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
Data seem to be stationary.
```{r message=F}
my_fn <- function(data, mapping, ...){
p <- ggplot(data = data, mapping = mapping) +
geom_point() +
geom_smooth(method=lm, fill="blue", color="blue", ...)
p
}
dat1proz>proz ggpairs(., lower = list(continuous = my_fn))
```
There seems to be a large Effect from factors A and B on the measured value. C,D,E don't seem to have an effect on measured.
## 8.1.5 Analyse the new performance data. (1 model) -> linear model
H~00~: Time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: C has no effect\
H~04~: D has no effect\
H~05~: E has no effect\
H~06~: time*A has no effect\
H~07~: time*B has no effect\
H~08~: time*C has no effect\
H~09~: time*D has no effect\
H~10~: time*E has no effect\
H~11~: A*B has no effect\
H~12~: A*C has no effect\
H~13~: A*D has no effect\
H~14~: A*E has no effect\
H~15~: B*C has no effect\
H~16~: B*D has no effect\
H~17~: B*E has no effect\
H~18~: C*D has no effect\
H~19~: C*E has no effect\
H~20~: D*E has no effect\
significance level $\alpha=0.05$\
```{r}
fullmodel=lm(measured~.^2,data=dat1) # linear model including all two-fold factor interactions (.^3 would include three-fold interactions, but only two-fold is of interest)
summary(fullmodel)
```
For nearly all effect and interactions with p>$\alpha$ the Null Hypothesis cannot be rejected.
Only for H~01~, H~02~, H~06~, H~11~ this is not the case. The p-value of H~07~ is very close to alpha and should be investigated further.
#### visualize effects and interactions
```{r}
dat <- dat1[-1]
fullmodel=lm(measured~.^2,data=dat) # linear model including all two-fold factor interactions (.^3 would include three-fold interactions, but only two-fold is of interest)
summary(fullmodel)
```
```{r}
MEPlot(fullmodel)
```
A and B have large effect. And C, D and E seem to be less relevant.
```{r}
IAPlot(fullmodel)
```
Only the interaction of A and B seems to be relevant.
## 8.1.6 Find the smallest reasonable model
### manually reduce model
Check with the BIC, if time and factors C,D,E might be needed in a reduced model.
```{r}
stepAIC(fullmodel,k=log(nrow(dat1)),direction = "both",trace = 0)
```
Time can't be eliminated as the two-fold interaction time:B seems to be important for the model. C,D,E can be eliminated as they don't appear in the reduced model of the BIC.
```{r}
dat1<-dat1[c(-4,-5,-6)]
```
Rerun the above model without C,D,E:
H~00~: time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: time:A has no effect\
H~04~: time:B has no effect\
H~05~: A:B has no effect\
significance level $\alpha=0.05$\
```{r}
reducModel1=lm(measured~.^2,data=dat1) # linear model including all two-factor interactions
summary(fullmodel)
```
All Null-Hypoth. except H~00~ and H~03~ need to be rejected.
Reduce model by removing interaction time:A but keeping interaction time:B:
H~00~: time has no effect\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: time:B has no effect\
H~04~: A:B has no effect\
significance level $\alpha=0.05$\
```{r}
reducModel2=lm(measured~time+A+B+time*B+A*B,data=dat1) # linear model including all two-factor interactions
summary(fullmodel)
```
All Null-Hypothesis need to be rejected except H~00~ as p(H~00~)>alpha.
compare manually reduced model with fullmodel:
```{r}
anova(fullmodel,reducModel2)
```
### automatically reduce model
find optimal model using AIC.
```{r}
stepa<-stepAIC(fullmodel,direction = "both",k=2,trace=0)
stepa$anova
```
find optimal model using BIC
```{r}
stepm<-stepAIC(fullmodel,direction = "both",k=log(nrow(dat1)),trace=0)
stepm$anova
```
The optimum model following the BIC is: measured ~ time + A + B + time:B + A:B
## 8.1.7 Verify that this smallest reduced model is sufficient with a second method (ANOVA)
Setup a reduced model:
H~01~: time has no effect\
H~02~: A has no effect\
H~03~: B has no effect\
H~04~: time:B has no effect\
H~05~: A:B has no effect\
significance level $\alpha=0.05$\
```{r}
model1=lm(measured ~ time + A + B + time:B + A:B ,data=dat1) # linear model including all factor interaction
summary(model1)
```
All hypothesis cannot be rejected, because p>0.05.
H~0~:$model1$ has same predictive value as the $fullmodel$ \
significance level $\alpha=0.05$\
```{r}
anova(model1,fullmodel) # comparing Reduced model with full model
```
$\because p>\alpha \Rightarrow$, I cannot reject H~0~.\
The models seem to perform equally good.
## 8.1.8 Estimate the number of experiments to have errors below 1proz
Estimate the number of experiments per level.
```{r}
r2=summary(model1)$r.squared
f=r2/(1-r2)
uf=5 # (6 factors and interactions and intercept - 1)
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2=ceiling(p_res$v+uf+1)
```
The estimation for number of experiments/total samples needed is `r n2`.
A second power analysis
```{r}
de1=as.data.frame(abs(coefficients(model1))/coef(summary(model1))[, "Std. Error"]) proz>proz filter(row_number() >= 2)
de1<-de1/sqrt(nr)
colnames(de1)<-c("delta")
del_es<-de1 proz>proz min()
del_es=min(del_es,3)proz>prozsignif(., digits = 4) # size.anova does not work for to small delta
r2=summary(model1)$adj.r.squared
f=r2/(1-r2)
del_r2=2*sqrt(f/nrow(dat1))
np=size.anova("axb",a=2,b=2,alpha=0.01,delta=del_es , beta=0.01,case="maximin")
np
```
The number of experiments/number of samples is `r np`.
```{r}
del_es
del_r2
```
del_es and del_r2 are the number of replications necessary.
## 8.1.9 Verify the assumptions made for the last model.
### Test the normality of the residuals.
#### Do a qq-plot
```{r}
ggqqplot(model1$residuals)
```
Residuals seem to be nearly normal distributed, but there are some deviations.
#### Shaprio Wilk Test for normality of residuals
H~0~ Residuals are normal distributed.\
significance level: $\alpha=5\proz$\
```{r}
shapiro.test(model1$residuals)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are normal distributed.\
### Test the homogenity of the residuals (Homoscedasticity)\
#### spread-level-plot
```{r warning=F}
spreadLevelPlot(model1)
```
The residuals look homogeneous.
#### hypothesis test for homogenity
H~0~ residuals are homogeneous distributed\
significance level: $\alpha=5\proz$
```{r}
ncvTest(model1)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals are homogeneous.\
### Look for high leverage outliers
#### Calculate the critical Cooks distance.
```{r}
cd1c=4*2/length(model1$residuals) #corrected by dimension of model (quadratic=2)
cd1=abs(cooks.distance(model1))
subset(cd1, cd1 > cd1c)
```
There seem to be some high leverage outliers
#### do InfluenceIndexPlot
```{r warning=F}
influenceIndexPlot(model1, vars=c("Cook", "hat"),id=list(n=3))
```
There seem to be some high leverage outliers e.g. Index 4, 11, 23.
### Check for autocorrelation
#### acf plot
```{r}
acf(model1$residuals)
```
There seems to be slight auto correlation in the residuals.
#### do a Durbin Watson Test
H~0~ residuals are not autocorrelated\
significance level: $\alpha=5\proz$
```{r}
durbinWatsonTest(model1)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals show no auto correlation.\
### Testing for Multicollinearity
#### Do a generalized pairs plot to spot correletations
```{r , message=F}
ggpairs(model1)
```
no correlation between the variables is seen.
#### do a Multicollinearity test
H~0~ Data are not multi collinar\
```{r}
vif(model1)
```
All values except for B and time:B are below 4
All vif values are below 10, i.e. there are no serious multicollinearity problems.
```{r}
library(performance)
check_collinearity(model1)
```
there seems to be moderate correlation for B and time:B.
```{r}
library(mctest)
omcdiag(model1)
imcdiag(model1)
```
## OPTIONAL: What happens when the resolution is too low?
If we choose: Resolution 3\
The model we target for is something like:\
$𝑦\sim 𝑥_0+𝑥_1 𝐴+𝑥_2 𝐵+𝑥_3 𝐶+𝑥_4 𝐷+𝑥_5 𝐸+𝑥_6 𝐴𝐵+𝑥_7 𝐴𝐶$\
However, if we do not specify anything R might choose other interactions.
```{r}
nexa=nrow(FrF2(resolution = 3, nfactors=5,clear=TRUE, res3=TRUE))
```
The number of experiments is `r nexa`.
Generate a fractional factorial plan.
```{r}
plan1a=FrF2(nexa,5,replication=3,default.levels = c(0, 2),randomize = T)
```
Write test plan to file
```{r echo=F, message=F, warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan_81a.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the test plan
write.table(plan1a,file="plan_81a.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
Read data
```{r}
dat1a = read.delim("plan_81a_res.csv", header = TRUE,sep = ";", dec = ".")
# head(dat1a)
dat1a<-dat1a[-1] # eliminate time
```
#### have a first look at the data
```{r}
datatable(dat1a)
```
#### Check class of variables
```{r}
map_df(dat1a, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
#### check if there is an NA for any machine
```{r}
dat1a proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
Carry out a Linear Model\
H~01~: A has no effect\
H~02~: B has no effect\
H~03~: C has no effect\
H~04~: D has no effect\
H~05~: E has no effect\
H~06~: A*B has no effect\
H~07~: A*C has no effect\
H~08~: A*D has no effect\
H~09~: A*E has no effect\
H~010~: B*C has no effect\
H~011~: B*D has no effect\
H~012~: B*E has no effect\
H~013~: C*D has no effect\
H~014~: C*E has no effect\
H~015~: D*E has no effect\
significance level $\alpha=0.05$\
```{r}
fullmodela=lm(measured~.^2,data=dat1a) # linear model including all factor interaction
summary(fullmodela)
```
Since the resolution is insufficient the interactions are not resolved.
```{r}
MEPlot(fullmodela)
``'
Since the effect D is confounded with the interaction A:B is seems that D has a effect despite the fact that it does not.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.