Description Usage Arguments Details Value Note Author(s) References Examples
This function provides access to several functions returning the optimal number of levels and / or observations in different types of One-Way, Two-Way and Three-Way ANOVA.
1 2 |
model |
A character string describing the model, allowed characters are
Examples: One-Way fixed: |
hypothesis |
Character string describiung Null hypothesis, can be omitted in
most cases if it is clear that a
test for no effects of factor A is performed, Other possibilities: |
assumption |
Character string. A few functions need an assumption on sigma, like
|
a |
Number of levels of fixed factor A |
b |
Number of levels of fixed factor B |
c |
Number of levels of fixed factor C |
n |
Number of Observations |
alpha |
Risk of 1st kind |
beta |
Risk of 2nd kind |
delta |
The minimum difference to be detected |
cases |
Specifies whether the |
see chapter 3 in the referenced book
named integer giving the desired size(s)
Depending on the selected model and hypothesis omit one or two of the
sizes a
, b
, c
, n
. The function then tries
to get its optimal value.
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt, Minghui Wang
Dieter Rasch, Juergen Pilz, L.R. Verdooren, Albrecht Gebhardt: Optimal Experimental Design with R, Chapman and Hall/CRC, 2011
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## Not run:
#########7##
You have two machines (ma) that have two control parameters (turning speed (ts), feederate (fr))
and you are interested in the roughness (ra) of your parts. The turning speed can be varied between
100 to 8000 rpm and feedrate from 0.001 to 0.01 mm/U, but you are only interested in the range: ts
4000 to 6000 rpm and fr 0.001 to 0.003 mm/U.
# 7.1
Characterize the first machine (1) to get a first impression on the machine performance. To get
the data set up a testing plan to do the screening (Write the plan to a csv file that has your
Matrikelnummer prior to the plan, followed by the variable names and then the levels of your
plan. The plan should have 3 columns (ma,ts,fr)). And then determine the corresponding linear
model and check, if it might be reduced.
# 7.2
Determine the number of experiments, if you want to right with your model to 99proz. And write a
second plan to compare the two machines. (Write the plan to a csv file that has your
Matrikelnummer prior to the plan, followed by the variable names and then the levels of your
plan. The plan should have 3 columns (ma,ts,fr)). And then analyse the result with an appropriate
model and check all the assumption
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
#7.1
## Generate Screening Plan machine 1
### generate plan
```{r}
ma=c(1) # machines tested
ts=c(4000,6000) # turning speeds tested
fr=c(0.001,0.003) # feed rates tested
nr=3 # number of replicates
plan1=expand.grid(ma,ts,fr) # generate a base plan
plan1=do.call("rbind", replicate(nr, plan1, simplify=F)) # replicate the base plan
names(plan1)<- c("ma","ts","fr") # to names the variables
set.seed(1234) # set seed for random number generator
plan1=plan1[order(sample(1:nrow(plan1))),] # randomize design
plan1
```
### write plan
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the Testplan
write.table(plan1,file="plan1.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
### read data
```{r}
dat1=read.delim("plan1_res.csv",header = T,dec=".", sep = ";")
dat1=transform(dat1,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat1)
```
Check class of variables
```{r}
map_df(dat1, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
check if there is an NA for any machine
```{r}
dat1 proz>proz group_by(ma) proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
### Have first glance at the data
#### Scatter Plot
```{r fig.height=9}
dat1 proz>proz ggplot(data=.,mapping = aes(x=time,y=ra)) + geom_point() + ggtitle("Scatterplot for Machine")
```
The data show no suspicious elements in the scatterplot. There doesnt't seem to be any obvious drift.
#### statistical tests before comparison of machines
-test for normality: shapiro-wilk-test -> H~0~: distribution is normal distributed\
-testing if stationary: KSPP test -> H~0~: distribution is stationary\
-testing for outliers: Rosner test -> H~0~: there are no outliers in the distribution\
-testing necessary power for Box Cox transformation to normal distribution -> powerTransform
the significance level for all tests is set to alpha=5proz\
```{r warning=F}
summary_val <- dat1 proz>proz group_by(ma)proz>proz summarise( shapiro_p = shapiro.test(ra)$p.value, kspp_p=kpss.test(ra)$p.value,n_outlier=rosnerTest(ra, k = 3, alpha = 0.05, warn = F)$n.outliers,Box_Cox_lamda=powerTransform(ra, family="bcPower")$lambda)
summary_val proz>proz mutate_if(is.numeric, format, digits=3,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "Statistical Test Results") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
for machine 1 H~0~ for normal distribution is rejected as p<alpha. They don't seem to be normal distributed.\
all distributions seem to stationary as p-value of KSPP is above alpha.\
there don't seem to be any outliers
the power for Box-Cox-Transformation is close to -0.5 for machines 1, distribution should be transformed to be closer to normal distribution.\
```{r , message=F, warning=F}
my_fn <- function(data, mapping, ...){
p <- ggplot(data = data, mapping = mapping) +
geom_point() +
geom_smooth(method=lm, fill="blue", color="blue", ...)
p
}
dat1proz>proz ggpairs(., lower = list(continuous = my_fn))
```
```{r warning=F, error=F}
scatterplotMatrix(~time+ts+fr+ra|ma, data=dat1 , #without machine, as machine has only one value (1)
reg.line="" , smoother="")
```
## Set up first model
H~01~: Parameter time has no effect.\
H~02~: Parameter fr has no effect.\
H~03~: Parameter ts has no effect.\
H~04~: There is no interaction between fr and ts.\
Set significance level. $\alpha=5\proz$
```{r}
mod1= lm(ra~time+ts*fr,data = dat1) #interactions with time are not important as there is no time drift
summary(mod1)
```
Only for ts:fr the p-value is below $\alpha$. Only H~04~ has to be rejected. -> the interaction ts:fr seems to have an effect. \
Do a simplified model without time:
H~01~: Parameter fr has no effect.\
H~02~: Parameter ts has no effect.\
H~03~: There is no interaction between fr and ts.\
Set significance level. $\alpha=5\proz$
```{r}
mod1a= dat1 proz>proz lm(ra~ts*fr,data = .)
summary(mod1a)
```
Only for ts:fr the p-value is close to $\alpha$ but still above alpha. -> No Null-Hypothesis can be rejected. \
H~0~: Both models are equally fine.\
Set significance level. $\alpha=5\proz$
```{r}
anova(mod1,mod1a)
```
Since $p>\alpha \therefore H_0$ cannot be rejected.\
Both models seem to be equally fine.
Do a simplified model without interaction ts:fr:
H~01~: Parameter fr has no effect.\
H~02~: Parameter ts has no effect.\
Set significance level. $\alpha=5\proz$
```{r}
mod1b= dat1 proz>proz lm(ra~ts+fr,data = .)
summary(mod1b)
```
both fr and ts have a p-value below $\alpha$. H~01~ and H~02~ have to be rejected. \
H~0~: Both models are equally fine.\
Set significance level. $\alpha=5\proz$
```{r}
anova(mod1,mod1b)
```
Since $p>\alpha \therefore H_0$ cannot be rejected.\
Both models seem to be equally fine.\
Find the best model using the BIC.\
```{r}
step1<-stepAIC(mod1,k=log(nrow(dat1)),direction = "both",trace = 0)
step1$anova
```
The BIC reaches the same best model.
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
# 7.2
Determine the number of experiments, if you want to right with your model to 99proz. And write a
second plan to compare the two machines. (Write the plan to a csv file that has your
Matrikelnummer prior to the plan, followed by the variable names and then the levels of your
plan. The plan should have 3 columns (ma,ts,fr)). And then analyse the result with an appropriate
model and check all the assumptions
## Do a power analysis
Estimate the number of experiments per level to be correct by 99proz (p=0.99) with lm.
```{r}
r2=summary(mod1)$r.squared
f=r2/(1-r2)
uf=4 # number of continuous predictors + number of dummy variables - 1; number of factors and interactions in model
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2=ceiling(p_res$v+uf+1)
```
```{r}
r2=summary(mod1a)$r.squared
f=r2/(1-r2)
uf=3 # number of continuous predictors + number of dummy variables - 1; number of factors and interactions in model
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2a=ceiling(p_res$v+uf+1)
```
```{r}
r2=summary(mod1b)$r.squared
f=r2/(1-r2)
uf=2 # number of continuous predictors + number of dummy variables - 1; number of factors and interactions in model
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n2b=ceiling(p_res$v+uf+1)
```
For the number of experiment/number of samples to be done derived from the first model `r n2`, from the second model `r n2a` and from the smallest model `r n2b`.
## generate a verification plan
```{r}
ma=c(1,2) # machines tested
ts=c(4000,6000) # turning speeds tested
fr=c(0.001,0.003) # feed rates tested
nr=ceiling(n2/2) # number of replicates (since 2 levels divide n2 by 2)
plan2=expand.grid(ma,ts,fr) # generate a base plan
plan2=do.call("rbind", replicate(nr, plan2, simplify=F)) # replicate the base plan
names(plan2)<- c("ma","ts","fr") # to names the variables
set.seed(1234) # set seed for random number generator
plan2=plan2[order(sample(1:nrow(plan2))),] # randomize design
```
Write test plan
```{r warning=F}
# First line writes the Matrikelnummer
write.table(matrikelnumber,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = F, append = F)
# Second line writes the Testplan
write.table(plan2,file="plan2.csv",sep = ";", dec = ".",row.names = F, col.names = T, append = T)
```
Read data
```{r}
dat2=read.delim("plan2_res.csv",header = T,dec=".", sep = ";")
dat2=transform(dat2,ma=as.factor(ma)) # transform the machine number from a numerical to a factor!
head(dat2)
```
Check class of variables
```{r}
map_df(dat1, class) proz>proz kbl(.,"html") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
Data types are set ok.
check if there is an NA for any machine
```{r}
dat2 proz>proz group_by(ma) proz>proz summarise("number of NA"= sum(is.na(.)))proz>proz datatable(.,class = 'cell-border stripe')
```
there are no NA
## Have first glance at the data
### Scatter Plot
```{r fig.height=9}
dat2 proz>proz ggplot(data=.,mapping = aes(x=time,y=ra)) + geom_point() + ggtitle("Scatterplot for Machine")
```
The data show no suspicious elements in the scatterplot. There doesn't seem to be any time drift.
H~0~ Distribution is stationary\
The significance level is set to $\alpha = 5\proz$
```{r warning=F}
summary_kpss <- dat2 proz>proz group_by(ma)proz>proz summarise(kpss_p=kpss.test(ra)$p.value)
summary_kpss proz>proz mutate_if(is.numeric, format, digits=2,nsmall = 1) proz>proz
kbl(.,"html",align = "r",caption = "KPSS Test Results ") proz>proz kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive"))
```
H~0~ cannot be rejected because ($p>\alpha$ ).\
Data are stationary.
## Check Effects
```{r , message=F, warning=F}
dat2 proz>proz ggpairs(., lower = list(continuous = my_fn), title ="all data")
dat2 proz>proz filter(ma==1) proz>proz ggpairs(., lower = list(continuous = my_fn), title ="machine 1")
dat2 proz>proz filter(ma==2) proz>proz ggpairs(., lower = list(continuous = my_fn), title ="machine 2")
```
Data look unsuspicious.
## find reduced model
Set up a model for the two machines.\
H~01~: Parameter time has no effect.\
H~02~: Machines have no effect.\
H~03~: Parameter fr has no effect.\
H~04~: Parameter ts has no effect.\
H~05~: There is no interaction between fr and ts.\
Set significance level. $\alpha=5\proz$
```{r}
mod2=lm(ra~time+ma+ts*fr,dat2) # Only ts and fr are parameters for control of ra -> interactions of time and ra are not of interest as there ist no time drift
summary(mod2)
```
Both factors and the machines seems to have an effect. However, the time seems to play no role, i.e. no drift.
All Null-Hypoth. are rejected except H~01~.
Set up a reduced model.
H~01~: Machines have no effect.\
H~02~: Parameter fr has no effect.\
H~03~: Parameter ts has no effect.\
H~04~: There is no interaction between fr and ts.\
Set significance level. $\alpha=5\proz$
```{r}
mod2a=lm(ra~ma+ts*fr,dat2)
summary(mod2a)
```
All $p<\alpha \therefore H_0$ has to be rejected for all Null hypothesis.\
All factors and interaction ts:fr seem to have an effect.
## Compare the models
H~0~ Models are equally good\
significance level $\alpha$=0.05\
```{r}
anova(mod2,mod2a)
```
p>$\alpha$ $\Rightarrow$ H~0~ cannot be rejected.\
The most appropriate model is including the factors and the interaction ts:fr.
Find the best model using the BIC.\
```{r}
step2<-stepAIC(mod2,k=log(nrow(dat2)),direction = "both")
```
The BIC reaches the same best model.\
Check, if the power is appropriate chosen to reach at least a power of p=0.99.\
```{r}
r2=summary(mod2a)$r.squared
f=r2/(1-r2)
sig=0.01
pwr.f2.test(u=4,v=nrow(dat2)/8,f2=f,sig.level=sig,power=NULL)
```
The division by 2^3=8 is done to account for the three dimensionality (two levels, three factors -> ma, ts, fr) of the model.\
The power seems to be correct.\
To be sure we rerun the analysis from before.\
```{r}
r2=summary(mod2)$r.squared
f=r2/(1-r2)
uf=5
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n22=ceiling(p_res$v+uf+1)
```
```{r}
r2=summary(mod2a)$r.squared
f=r2/(1-r2)
uf=4
sig=0.01
p=0.99
p_res=pwr.f2.test(u=uf,v=NULL,f2=f,sig.level=sig,power=p)
n22a=ceiling(p_res$v+uf+1)
```
The rerun of the power analysis suggests running one experiment more (`r n22` and `r n22a`).
## Visualize results
```{r}
MEPlot(mod2a)
```
The highest effect is by the feedrate, followed by the turning speed and also the machines seem to have an main effect on ra.
```{r}
IAPlot(mod2a)
```
There is a slight interaction between turning rate and feed rate.
## Test the assumptions of the model
### Test the normality of the residuals.
#### Do a qq-plot
```{r}
ggqqplot(mod2a$residuals)
```
Residuals seem to be nearly normal distributed, but there are some deviations.
#### Do a Shapiro Wilk Test on the residuals
>H~0~ Residuals are normal distributed.\
significance level: $\alpha=5\proz$\
```{r}
shapiro.test(mod2a$residuals)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals seem to be normal distributed.\
### Test the homogeneity of the residuals\
#### spread-level plot
```{r warning=F}
spreadLevelPlot(mod2a)
```
The residuals look homogeneous.
#### ncvTest to test homogenous distr. of residuals
H~0~ residuals are homogeneous distributed\
significance level: $\alpha=5\proz$
```{r}
ncvTest(mod2a)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals seem to be homogeneous.\
### Look for leverage points outliers
#### Calculate the critical Cooks distance.
```{r}
cd1c=4*2/length(mod2a$residuals)
cd1=abs(cooks.distance(mod2a))
subset(cd1, cd1 > cd1c)
```
There might be four high leverage points.
#### do InfluenceIndexPlot
```{r warning=F}
influenceIndexPlot(mod2a, vars=c("Cook", "hat"),id=list(n=3))
```
There might be one high leverage outlier at Index 23.
### Check for autocorrelation
#### acf plot for auto correlation
```{r}
acf(mod2a$residuals)
```
There seems to be low auto correlation in the residuals.
#### Durbin Watson Test for autocorrelation
H~0~ residuals are not autocorrelated\
significance level: $\alpha=5\proz$
```{r}
durbinWatsonTest(mod2a)
```
$p>\alpha \therefore H_0$ cannot be rejected.\
Thus the residuals show no auto correlation.\
### Test for Multicollinearity
#### Do a generalized pairs plot to spot correletations
```{r , message=F, warning=F}
ggpairs(mod2a)
```
no correlation between the variables ts, fr and ma is seen.
#### do a Multicollinearity test
H~0~ Data are not multi collinar\
```{r}
vif(mod2a)
```
not all values are below 4, i.e. there might be a problem (vif values below 10 are acceptable, vif values below 4 are ideal, vif>10 inidcates multicollin.).
```{r}
library(performance)
check_collinearity(mod2a)
```
using another package however gets fine results.
```{r}
library(mctest)
omcdiag(mod2a)
imcdiag(mod2a)
```
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="maximin")
size.anova(model="a",a=4,
alpha=0.05,beta=0.1, delta=2, case="minimin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="a", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="maximin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axb", hypothesis="axb", a=6, b=4,
alpha=0.05,beta=0.1, delta=1, cases="minimin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="maximin")
size.anova(model="axBxC",hypothesis="a",
assumption="sigma_AC=0,b=c",a=6,n=2,
alpha=0.05, beta=0.1, delta=0.5, cases="minimin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=2, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=20, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="a>B>c", hypothesis="c",a=6, b=NA, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="maximin")
size.anova(model="(axb)>c", hypothesis="a",a=6, b=5, c=4,
alpha=0.05, beta=0.1, delta=0.5, case="minimin")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.