#' @name .bpvar_linear_wrapper
#' @noRd
#' @importFrom abind adrop
#' @importFrom utils capture.output
.BPVAR_linear_wrapper <- function(Yraw, prior, plag, draws, burnin, cons, trend, SV, thin, default_hyperpara, Ex, applyfun, cores){
prior_in <- ifelse(prior=="NG",3,NA)
if(default_hyperpara[["a_log"]]) default_hyperpara["a_start"] <- 1/log(ncol(Yraw))
Y_in=Yraw
p_in=plag
draws_in=draws
burnin_in=burnin
cons_in=cons
trend_in=trend
sv_in=SV
thin_in=thin
prior_in=prior_in
hyperparam_in=default_hyperpara
Ex_in=Ex
bpvar<-.BPVAR_linear_R(Y_in=Yraw,p_in=plag,draws_in=draws,burnin_in=burnin,cons_in=cons,trend_in=trend,sv_in=SV,thin_in=thin,prior_in=prior_in,hyperparam_in=default_hyperpara,Ex_in=Ex)
#------------------------------------------------ get data ----------------------------------------#
Y <- bpvar$Y; colnames(Y) <- colnames(Yraw); X <- bpvar$X
Y.big
M <- ncol(Y); bigT <- nrow(Y); K <- ncol(X)
if(!is.null(Ex)) Mex <- ncol(Ex)
xnames <- paste(rep("Ylag",M),rep(seq(1,plag),each=M),sep="")
if(!is.null(Ex)) xnames <- c(xnames,paste(rep("Tex",Mex)))
if(cons) xnames <- c(xnames,"cons")
if(trend) xnames <- c(xnames,"trend")
colnames(X) <- xnames
#-----------------------------------------get containers ------------------------------------------#
A_store <- bpvar$A_store; dimnames(A_store)[[2]] <- colnames(X); dimnames(A_store)[[3]] <- colnames(Y)
# splitting up stores
dims <- dimnames(A_store)[[2]]
a0store <- a1store <- Exstore <- NULL
if(cons) {
a0store <- adrop(A_store[,which(dims=="cons"),,drop=FALSE],drop=2)
}
if(trend){
a1store <- adrop(A_store[,which(dims=="trend"),,drop=FALSE],drop=2)
}
if(!is.null(Ex)){
Exstore <- A_store[,which(dims=="Tex"),,drop=FALSE]
}
Phistore <- NULL
for(jj in 1:plag){
Phistore[[jj]] <- A_store[,which(dims==paste("Ylag",jj,sep="")),,drop=FALSE]
}
S_store <- array(NA, c(draws/thin,bigT,M,M)); dimnames(S_store) <- list(NULL,NULL,colnames(Y),colnames(Y))
if(prior%in%c("MN","SSVS","NG")){
L_store <- bpvar$L_store
for(irep in 1:(draws/thin)){
for(tt in 1:bigT){
if(M>1){
S_store[irep,tt,,] <- L_store[irep,,]%*%diag(exp(bpvar$Sv_store[irep,tt,]))%*%t(L_store[irep,,])
}else{
S_store[irep,tt,,] <- L_store[irep,,]%*%exp(bpvar$Sv_store[irep,tt,])%*%t(L_store[irep,,])
}
}
}
Smed_store <- apply(S_store,c(1,3,4),median)
if(SV){
vola_store <- bpvar$Sv_store; dimnames(vola_store) <- list(NULL,NULL,colnames(Y))
pars_store <- bpvar$pars_store
vola_post <- apply(vola_store,c(2,3),median)
pars_post <- apply(pars_store,c(2,3),median)
}else{
vola_store <- bpvar$Sv_store; pars_store <- NULL;
vola_post <- apply(vola_store,c(2,3),median); pars_post <- NULL
}
}else if(prior=="NC"){
Smed_store <- bpvar$S_store
for(irep in 1:(draws/thin)){
for(tt in 1:bigT){
S_store[irep,tt,,] <- bpvar$S_store[irep,,]
}
}
L_store <- NULL
theta_store <- NULL
vola_store <- NULL
pars_store <- NULL
vola_post <- NULL
pars_post <- NULL
}
theta_store <- bpvar$theta_store; dimnames(theta_store)[[2]] <- colnames(X); dimnames(theta_store)[[3]] <- colnames(Y)
res_store <- bpvar$res_store; dimnames(res_store) <- list(NULL,NULL,colnames(Y))
# MN
if(prior=="MN"){
shrink_store <- bpvar$shrink_store; dimnames(shrink_store) <- list(NULL,c("shrink1","shrink2"))
shrink_post <- apply(shrink_store,2,median)
}else{
shrink_store <- shrink_post <- NULL
}
# SSVS
if(prior=="SSVS"){
gamma_store <- bpvar$gamma_store; dimnames(gamma_store) <- list(NULL,colnames(X),colnames(Y))
omega_store <- bpvar$omega_store; dimnames(omega_store) <- list(NULL,colnames(Y),colnames(Y))
PIP <- apply(gamma_store,c(2,3),mean)
PIP_omega <- apply(omega_store,c(2,3),mean)
}else{
gamma_store <- omega_store <- PIP <- PIP_omega <- NULL
}
# NG
if(prior=="NG"){
lambda2_store <- bpvar$lambda2_store
tau_store <- bpvar$tau_store
dimnames(lambda2_store) <- list(NULL,paste("lag",1:plag,sep="_"),c("endogenous","covariance"))
dimnames(lambda2_store) <- list(NULL,paste("lag",1:plag,sep="_"),c("endogenous","covariance"))
lambda2_post <- apply(lambda2_store,c(2,3),median)
tau_post <- apply(tau_store,c(2,3),median)
}else{
lambda2_store <- tau_store <- lambda2_post <- tau_post <- NULL
}
store <- list(A_store=A_store,a0store=a0store,a1store=a1store,Phistore=Phistore,Exstore=Exstore,S_store=S_store,Smed_store=Smed_store,
L_store=L_store,theta_store=theta_store,vola_store=vola_store,pars_store=pars_store,res_store=res_store,
shrink_store=shrink_store,gamma_store=gamma_store,omega_store=omega_store,lambda2_store=lambda2_store,tau_store=tau_store)
#------------------------------------ compute posteriors -------------------------------------------#
A_post <- apply(A_store,c(2,3),median)
S_post <- apply(S_store,c(2,3,4),median)
Sig <- apply(S_post,c(2,3),mean)/(bigT-K)
theta_post <- apply(theta_store,c(2,3),median)
res_post <- apply(res_store,c(2,3),median)
# splitting up posteriors
a0post <- a1post <- Expost <- NULL
if(cons) a0post <- A_post[which(dims=="cons"),,drop=FALSE]
if(trend) a1post <- A_post[which(dims=="trend"),,drop=FALSE]
if(!is.null(Ex)) Expost <- A_post[which(dims=="Tex"),,drop=FALSE]
Phipost <- NULL
for(jj in 1:plag){
Phipost <- rbind(Phipost,A_post[which(dims==paste("Ylag",jj,sep="")),,drop=FALSE])
}
post <- list(A_post=A_post,a0post=a0post,a1post=a1post,Phipost=Phipost,Expost=Expost,S_post=S_post,Sig=Sig,theta_post=theta_post,
vola_post=vola_post,pars_post=pars_post,res_post=res_post,shrink_post=shrink_post,PIP=PIP,PIP_omega=PIP_omega,
lambda2_post=lambda2_post,tau_post=tau_post)
return(list(Y=Y,X=X,store=store,post=post))
}
#' @name .BPVAR_linear_R
#' @noRd
#' @importFrom magic adiag
#' @importFrom mvtnorm rmvnorm
#' @importFrom stochvol svsample_fast_cpp specify_priors default_fast_sv
#' @importFrom bayesm rwishart
.BPVAR_linear_R <- function(Y_in,p_in,draws_in,burnin_in,cons_in,trend_in,sv_in,thin_in,prior_in,hyperparam_in,Ex_in){
#------------------------------checks----------------------------------------------#
Yraw <- Y_in
p <- p_in
cN <- names(Yraw)
N <- length(cN)
Traw <- unlist(lapply(Yraw,nrow))
timeraw <- lapply(Yraw, rownames)
names <- colnames(Yraw[[1]])
if(is.null(names)) names <- rep("Y",M)
M <- length(names)
K <- M*p
nameslags <- NULL
for(ii in 1:p) nameslags <- c(nameslags,paste0(names,".lag",ii))
Ylag <- lapply(Yraw,function(y){
y<-.mlag(y,p)
colnames(y)<-nameslags
return(y)
})
texo <- FALSE; Mex <- 0; Exraw <- NULL; enames <- NULL
if(!is.null(Ex_in)){
Exraw <- Ex_in
enames <- paste0("Tex.",colnames(Exraw[[1]]))
if(is.null(enames)) enames <- rep("Tex",Mex)
Exraw <- lapply(Exraw,function(e){
colnames(e)<-enames
return(e)
})
Mex <- length(enames)
texo <- TRUE
}else{
Exraw <- vector(mode="list", length=N)
}
X <- lapply(1:N,function(cc) cbind(Ylag[[cc]],Exraw[[cc]]))
names(X) <- cN
X <- lapply(1:N,function(cc) X[[cc]][(p+1):nrow(X[[cc]]),,drop=FALSE])
Y <- lapply(1:N,function(cc) Yraw[[cc]][(p+1):Traw[cc],,drop=FALSE])
bigT <- sapply(Y,nrow)
cons <- cons_in
if(cons){
X <- lapply(X,function(x){
x<-cbind(x,1)
colnames(x)[ncol(x)] <- "cons"
return(x)
})
}
trend <- trend_in
if(trend){
X <- lapply(X,function(x){
x<-cbind(x,seq(1,nrow(x)))
colnames(x)[ncol(x)] <- "trend"
return(x)
})
}
k <- K+Mex+cons+trend
q <- k*M
h <- q*N
MN <- M*N
v <- (M*(M-1))/2
#---------------------------------------------------------------------------------------------------------
# HYPERPARAMETERS
#---------------------------------------------------------------------------------------------------------
hyperpara <- hyperparam_in
prior <- prior_in
sv <- sv_in
prmean <- hyperpara$prmean
a_1 <- hyperpara$a_1
b_1 <- hyperpara$b_1
crit_eig <- hyperpara$crit_eig
Bsigma <- hyperpara$Bsigma
a0 <- hyperpara$a0
b0 <- hyperpara$b0
bmu <- hyperpara$bmu
Bmu <- hyperpara$Bmu
# prior == 1: MN
shrink1 <- hyperpara$shrink1
shrink2 <- hyperpara$shrink2
shrink3 <- hyperpara$shrink3
shrink4 <- hyperpara$shrink4
s0 <- hyperpara$s0
v0 <- hyperpara$v0
# prior == 3: NG
d_lambda <- hyperpara$d_lambda
e_lambda <- hyperpara$e_lambda
a_start <- hyperpara$a_start
sample_A <- hyperpara$sample_A
#--------------------------OLS estimates------------------------------------------#
A_OLS <- array(NA, c(k, M, N))
E_OLS <- list()
S_OLS <- array(NA, c(M, M, N))
S_inv <- array(NA, c(M, M, N))
for(cc in 1:N){
Y.c <- as.matrix(Y[[cc]])
X.c <- as.matrix(X[[cc]])
temp <- try(solve(crossprod(X.c))%*%t(X.c)%*%Y.c, silent=TRUE)
if(is(temp,"try-error")) temp <- ginv(crossprod(X.c))%*%t(X.c)%*%Y.c
A_OLS[,,cc] <- temp
E_OLS[[cc]] <- Y.c - X.c%*%A_OLS[,,cc]
S_OLS[,,cc] <- crossprod(E_OLS[[cc]])/(bigT[cc]-k)
temp <- try(solve(S_OLS[,,cc]), silent=TRUE)
if(is(temp,"try-error")) temp <- ginv(S_OLS[,,cc])
S_inv[,,cc] <- temp
}
#--------------------------Initialize Gibbs sampler--------------------------------#
Y.big <- do.call("rbind",Y)
X.big <- do.call("rbind",X)
sigma_sq <- matrix(0,M,1) #vector which stores the residual variance
for(mm in 1:M){
Y_m <- Y.big[,mm,drop=FALSE]
X_m <- X.big # check!!!!
alpha_i <- solve(crossprod(X_m))%*%crossprod(X_m,Y_m)
sigma_sq[mm,1] <- (1/(nrow(Y_m)-ncol(X_m)))*crossprod(Y_m-X_m%*%alpha_i)
}
A_draw <- A_OLS;dimnames(A_draw)[[1]]<-colnames(X.big);dimnames(A_draw)[[2]]<-colnames(Y.big);dimnames(A_draw)[[3]]<-cN
alpha_draw <- apply(A_OLS, c(1,2), mean);dimnames(alpha_draw) <- list(colnames(X.big),colnames(Y.big))
S_draw <- S_OLS
Em <- Em.str <- lapply(bigT,function(l)matrix(NA,l,M))
#----------------------------PRIORS-----------------------------------------------#
Omegab_prior <- array(0, c(k,k,M))
for(mm in 1:M) {
diags <- seq(1,K+Mex)
ondiag <- seq(mm,M*p,by=M)
for(pp in 1:p){
Omegab_prior[ondiag[pp],ondiag[pp],mm] <- (1/(pp^shrink3))^2
for(mmm in 1:M) {
z <- (pp-1)*M+mmm
if(z != ondiag[pp]) Omegab_prior[diags[z],diags[z],mm] <-
(sigma_sq[mm,1]/sigma_sq[mmm,1])*(shrink2/(pp^shrink3))^2
}
}
if(texo){
for(ww in 1:Mex) {
z <- diags[K+ww]
Omegab_prior[z,z,mm] <- sigma_sq[mm,1]*(shrink4)^2
}
}
if(cons) Omegab_prior[K+Mex+1,K+Mex+1,mm] <- sigma_sq[mm,1]*shrink4^2
if(trend) Omegab_prior[K+Mex+2,K+Mex+2,mm] <- sigma_sq[mm,1]*shrink4^2
}
# make list
Omegab_prior <- lapply(seq(dim(Omegab_prior)[3]), function(x) Omegab_prior[,,x])
Omegab_prior <- Reduce(adiag,Omegab_prior)
Omegab_priorinv <- diag(1/diag(Omegab_prior))
V_prior <- shrink1 * Omegab_prior
Vinv_prior <- diag(1/diag(V_prior))
# prior mean for common mean
alpha_prior <- matrix(0,k,M)
# prior variance for common mean
theta <- matrix(.1,k,M)
# NG A_draw
lambda2_A <- matrix(0.01,p,1)
A_tau <- matrix(a_start,p,1)
colnames(A_tau) <- colnames(lambda2_A) <- "endo"
rownames(A_tau) <- rownames(lambda2_A) <- paste("lag.",seq(1,p),sep="")
A_tuning <- matrix(.43,p,1)
A_accept <- matrix(0,p,1)
#------------------------------------
# non-SV quantities
#------------------------------------
# # variances
# sigma2.scale <- array(0,c(M,1,N)) # individual per country or arvar from above?
# for(cc in 1:N) {
# for (mm in 1:M){
# temp0 <- lm(Y[[cc]][-1,mm]~Y[[cc]][-nrow(Y[[cc]]),mm])
# sigma2.scale[mm,,cc] <- summary(temp0)$sigma
# }
# }
m0 <- 2.5 + (M - 1) / 2
n0 <- 0.5 + (M - 1) / 2
Q0 <- 100 * n0 / m0 * diag(as.numeric(sigma_sq))
# Q0 <- array(0, c(M, M, N))
# for(cc in 1:N) {
# Q0[,,cc] <- 100 * n0 / m0 * diag(as.numeric(sigma2.scale[,,cc]))
# }
#------------------------------------
# SV quantities
#------------------------------------
Sv_draw <- lapply(bigT, function(tt) matrix(-3,tt,M)); names(Sv_draw) <- cN
svdraw <- lapply(bigT, function(tt) list(para=c(mu=-10,phi=.9,sigma=.2),latent=rep(-3,tt))); names(svdraw) <- cN
pars_var <- array(c(-3,.9,.2,-3), c(4,M,N),
dimnames=list(c("mu","phi","sigma","latent0"),names,cN))
hv <- svdraw[[1]]$latent
para <- list(mu=-3,phi=.9,sigma=.2)
#---------------------------------------------------------------------------------------------------------
# SAMPLER MISCELLANEOUS
#---------------------------------------------------------------------------------------------------------
nsave <- draws_in
nburn <- burnin_in
ntot <- nsave+nburn
# thinning
thin <- thin_in
count <- 0
thindraws <- nsave/thin
thin.draws <- seq(nburn+1,ntot,by=thin)
#---------------------------------------------------------------------------------------------------------
# STORAGES
#---------------------------------------------------------------------------------------------------------
A_store <- array(NA, c(nsave, k, M, N))
alpha_store <- array(NA, c(nsave, k, M))
S_store <- array(NA, c(nsave, M, M, N))
C0_store <- array(NA, c(nsave, M, M))
theta_store <- array(NA, c(nsave, k, M))
shrink_store <- array(NA, c(nsave, 1))
lambda2_store <- array(NA, c(nsave, p))
tau_store <- array(NA, c(nsave, p))
pars_store <- array(NA, c(nsave, 3, M, N))
#---------------------------------------------------------------------------------------------------------
# MCMC LOOP
#---------------------------------------------------------------------------------------------------------
for (irep in 1:ntot){
#----------------------------------------------------------------------------------------
# Step I: Sample autoregressive parameters per country
for(cc in 1:N) {
Y.c <- Y[[cc]]
X.c <- X[[cc]]
S_inv.c <- S_inv[,,cc]
Vinvprior <- diag(1/diag(V_prior))
psi_xx <- kronecker(S_inv.c,crossprod(X.c))
V_post <- try(solve(psi_xx + Vinvprior),silent=TRUE)
if(is(V_post,"try-error")) V_post <- MASS::ginv(psi_xx + Vinvprior)
IXY <- kronecker(diag(M),crossprod(X.c,Y.c))
visig <- as.vector(S_inv.c)
a_post <- V_post%*%(IXY%*%visig + Vinvprior%*%as.vector(alpha_draw))
a_draw <- try(a_post + t(chol(V_post))%*%rnorm(M*k,0,1),silent=TRUE) # Draw alpha
if (is(a_draw,"try-error")) a_draw <- t(rmvnorm(1, a_post, V_post))
A_draw[,,cc] <- matrix(a_draw, k, M)
Em[[cc]] <- Y.c - X.c %*% matrix(a_draw, k, M)
}
#----------------------------------------------------------------------------------------
#Step II: Pooling prior
ng<-TRUE
if(ng){
for(mm in 1:M){
mean.i <- A_draw[,mm,]
varinv.i <- diag(1/diag(V_prior[((mm-1)*k+1):(mm*k),((mm-1)*k+1):(mm*k)]))
priormean.i <- alpha_prior[,mm]
priorvarinv.i <- diag(1/c(theta[,mm]))
# posterior para
S_post <- try(chol2inv(chol(N * varinv.i + priorvarinv.i)), silent=TRUE)
if(is(S_post,"try-error")) S_post <- solve(N * varinv.i + priorvarinv.i)
mu_post <- S_post %*% (varinv.i %*% apply(mean.i, 1, sum) + priorvarinv.i %*% priormean.i)
# posterior draw
temp <- try(mu_post + t(chol(S_post))%*%rnorm(k), silent=TRUE)
if(is(temp,"try_error")) temp <- rmvnorm(1, mu_post, S_post)
alpha_draw[,mm] <- temp
}
} else {
mean.all <- apply(A_draw, c(1, 2), mean)
mean.all <- as.vector(mean.all)
mean.var <- as.vector(tau2_coef_draw)/N
alpha_draw <- matrix(rmvnorm(1, mean.all, diag(mean.var)), k, M)
}
#----------------------------------------------------------------------------------------
# Step III: update heterogeneity coefficient with Gamma prior -> GIG posterior
dev <- apply(A_draw, 3, function(a) t(c(a)-c(alpha_draw))%*%Omegab_priorinv%*%(c(a)-c(alpha_draw)))
shrink1 <- rgig(1, -h/2 + v0, sum(dev), 2 * s0)
V_prior <- shrink1 * Omegab_prior
Vinv_prior <- diag(1/diag(V_prior))
#----------------------------------------------------------------------------------------
# Step III: Normal-Gamma prior on alpha_draw
for (ss in 1:p){
slct.i <- which(grepl(paste0(".lag",ss),rownames(alpha_draw)))
if(ss==1) slct.i <- c(slct.i,which(grepl("Tex",rownames(alpha_draw))))
alpha.lag <- alpha_draw[slct.i,,drop=FALSE]
alpha.prior <- alpha_prior[slct.i,,drop=FALSE]
theta.lag <- theta[slct.i,,drop=FALSE]
M.end <- nrow(alpha.lag)
if (ss==1){
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M.end^2,e_lambda+A_tau[ss,1]/2*sum(theta.lag))
}else{
lambda2_A[ss,1] <- rgamma(1,d_lambda+A_tau[ss,1]*M.end^2,e_lambda+A_tau[ss,1]/2*prod(lambda2_A[1:(ss-1),1])*sum(theta.lag))
}
for(jj in 1:M.end){
for (ii in 1:M){
theta.lag[jj,ii] <- do_rgig1(lambda=A_tau[ss,1]-0.5,
chi=(alpha.lag[jj,ii]-alpha.prior[jj,ii])^2,
psi=A_tau[ss,1]*prod(lambda2_A[1:ss,1]))
}
}
theta.lag[theta.lag<1e-8] <- 1e-8
theta[slct.i,] <- theta.lag
#TO BE MODIFIED
if (sample_A){
#Sample a_tau through a simple RWMH step (on-line tuning of the MH scaling within the first 50% of the burn-in phase)
A_tau_prop <- exp(rnorm(1,0,A_tuning[ss,1]))*A_tau[ss,1]
post_A_tau_prop <- .atau_post(atau=A_tau_prop, thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post_A_tau_old <- .atau_post(atau=A_tau[ss,1], thetas=as.vector(theta.lag), lambda2=prod(lambda2_A[1:ss,1]), k=length(theta.lag))
post.diff <- post_A_tau_prop-post_A_tau_old
post.diff <- ifelse(is.nan(post.diff),-Inf,post.diff)
if (post.diff > log(runif(1,0,1))){
A_tau[ss,1] <- A_tau_prop
A_accept[ss,1] <- A_accept[ss,1]+1
}
if (irep<(0.5*nburn)){
if ((A_accept[ss,1]/irep)>0.3) A_tuning[ss,1] <- 1.01*A_tuning[ss,1]
if ((A_accept[ss,1]/irep)<0.15) A_tuning[ss,1] <- 0.99*A_tuning[ss,1]
}
}
}
#----------------------------------------------------------------------------------------
# Step IV: Sample Sigma from hierarchical Wishart setup
if(sv){
stop("SV currently not implemented.")
}else{
C0_j <- rwishart(N * (n0 + m0 * N), # N *
1/N * chol2inv(chol(Q0 + apply(S_inv, c(1,2), sum))))$W # Flo W, 1/N *
for(cc in 1:N) {
# following code in MS_VAR
scale0 <- crossprod(Em[[cc]])/2 + C0_j
v_post <- bigT[[cc]] / 2 + m0
S_draw[,,cc] <- rwishart(N * v_post, 1/N * chol2inv(chol(scale0)))$IW # Flo IW, N *, 1/N *
S_inv[,,cc] <- solve(S_draw[,,cc])
}
}
#----------------------------------------------------------------------------------------
# Step VII: Store draws after burn-in/ Compute forecasts/ Impulse responses etc.
if(irep %in% thin.draws){
count <- count+1
A_store[count,,,] <- A_draw
alpha_store[count,,] <- alpha_draw
S_store[count,,,] <- S_draw
C0_store[count,,] <- C0_j
shrink_store[count,] <- shrink1
theta_store[count,,] <- theta
lambda2_store[count,]<- lambda2_A
tau_store[count,] <- A_tau
} # END OF STEP V
}
#---------------------------------------------------------------------------------------------------------
# END ESTIMATION
#---------------------------------------------------------------------------------------------------------
dimnames(A_store)=list(NULL,colnames(X.big),colnames(Y.big),cN)
dimnames(alpha_store)=list(NULL,colnames(X.big),colnames(Y.big))
ret <- list(Y=Y,X=X,Y.big=Y.big,X.big=X.big,A_store=A_store,alpha_store=alpha_store,S_store=S_store,C0_store=C0_store,shrink_store=shrink_store,theta_store=theta_store,lambda2_store=lambda2_store,tau_store=tau_store,pars_store=pars_store)
return(ret)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.