#' @export
as_prediction.PredictionDataDens = function(x, check = TRUE, ...) { # nolint
invoke(PredictionDens$new, check = check, .args = x)
}
#' @export
check_prediction_data.PredictionDataDens = function(pdata, ...) { # nolint
row_ids = assert_row_ids(pdata$row_ids)
n = length(row_ids)
assert_numeric(pdata$pdf, len = n, any.missing = FALSE, null.ok = TRUE)
assert_numeric(pdata$cdf, len = n, any.missing = FALSE, null.ok = TRUE)
if (!is.null(pdata$distr)) {
assert_class(pdata$distr, "Distribution")
}
pdata
}
#' @export
is_missing_prediction_data.PredictionDataDens = function(pdata, ...) { # nolint
miss = logical(length(pdata$row_ids))
if (!is.null(pdata$pdf)) {
miss = is.na(pdata$pdf)
}
if (!is.null(pdata$cdf)) {
miss = miss | is.na(pdata$cdf)
}
pdata$row_ids[miss]
}
#' @export
c.PredictionDataDens = function(..., keep_duplicates = TRUE) { # nolint
dots = list(...)
assert_list(dots, "PredictionDataDens")
assert_flag(keep_duplicates)
if (length(dots) == 1L) {
return(dots[[1L]])
}
predict_types = names(mlr_reflections$learner_predict_types$dens)
predict_types = map(dots, function(x) intersect(names(x), predict_types))
if (!every(predict_types[-1L], setequal, y = predict_types[[1L]])) {
stopf("Cannot combine predictions: Different predict types")
}
predict_types = predict_types[[1L]]
row_ids = do.call(c, map(dots, "row_ids"))
ii = if (keep_duplicates) seq_along(row_ids) else which(!duplicated(row_ids, fromLast = TRUE))
elems = c("truth", intersect(c("pdf", "cdf"), predict_types))
result = named_list(elems)
result$row_ids = row_ids[ii]
for (elem in elems) {
result[[elem]] = do.call(c, map(dots, elem))[ii]
}
if ("distr" %in% predict_types) {
result$distr = do.call(c, map(dots, function(.x) rep(.x$distr, length(.x$row_ids))))
}
set_class(result, "PredictionDataDens")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.