#' @export
as_prediction.PredictionDataSurv = function(x, check = TRUE, ...) { # nolint
invoke(PredictionSurv$new, check = check, .args = x)
}
#' @export
check_prediction_data.PredictionDataSurv = function(pdata, ...) { # nolint
n = length(assert_row_ids(pdata$row_ids))
assert_surv(pdata$truth, "Surv", len = n, any.missing = TRUE, null.ok = TRUE)
assert_numeric(pdata$crank, len = n, any.missing = FALSE, null.ok = FALSE)
assert_numeric(pdata$response, len = n, any.missing = FALSE, null.ok = TRUE)
assert_numeric(pdata$lp, len = n, any.missing = FALSE, null.ok = TRUE)
if (inherits(pdata$distr, "VectorDistribution")) {
assert(nrow(pdata$distr$modelTable) == n)
} else if (inherits(pdata$distr, c("Matdist", "Arrdist"))) {
assert(nrow(gprm(pdata$distr, "pdf")) == n)
} else if (class(pdata$distr)[1L] == "array") { # from Arrdist
assert_array(pdata$distr, d = 3, any.missing = FALSE, null.ok = TRUE)
} else {
assert_matrix(pdata$distr, nrows = n, any.missing = FALSE, null.ok = TRUE)
}
pdata
}
#' @export
is_missing_prediction_data.PredictionDataSurv = function(pdata, ...) { # nolint
miss = logical(length(pdata$row_ids))
if (!is.null(pdata$crank)) {
miss = is.na(pdata$crank)
}
if (!is.null(pdata$lp)) {
miss = miss | is.na(pdata$lp)
}
if (!is.null(pdata$response)) {
miss = miss | is.na(pdata$response)
}
pdata$row_ids[miss]
}
#' @export
c.PredictionDataSurv = function(..., keep_duplicates = TRUE) {
dots = list(...)
assert_list(dots, "PredictionDataSurv")
assert_flag(keep_duplicates)
if (length(dots) == 1L) {
return(dots[[1L]])
}
predict_types = names(mlr_reflections$learner_predict_types$surv)
predict_types = map(dots, function(x) intersect(names(x), predict_types))
if (!every(predict_types[-1L], setequal, y = predict_types[[1L]])) {
stopf("Cannot combine predictions: Different predict types")
}
predict_types = predict_types[[1L]]
row_ids = do.call(c, map(dots, "row_ids"))
ii = if (keep_duplicates) seq_along(row_ids) else which(!duplicated(row_ids, fromLast = TRUE))
elems = c("truth", intersect(c("crank", "lp", "response"), predict_types))
result = named_list(elems)
result$row_ids = row_ids[ii]
for (elem in elems) {
result[[elem]] = do.call(c, map(dots, elem))[ii]
}
if ("distr" %in% predict_types) {
distr_list = map(dots, "distr")
test_dist = unique(map_lgl(distr_list, testDistribution))
# Mix of distributions and arrays? Convert arrays to distributions!
if (length(test_dist) == 2L) {
distr_list = map(distr_list, function(.x) {
if (testDistribution(.x)) {
.x
} else {
as.Distribution(1 - .x, fun = "cdf",
decorators = c("CoreStatistics", "ExoticStatistics"))
}
})
test_dist = TRUE
}
# All distributions? Concatenate!
if (test_dist) {
result$distr = do.call(c, c(distr_list,
list(decorators = c("CoreStatistics", "ExoticStatistics"))))
} else {
dims = map_int(distr_list, function(.x) length(dim(.x)))
# If mix of arrays and matrices, convert arrays to median survival matrices
if (length(unique(dims)) > 1L) {
distr_list = lapply(distr_list, function(.x) {
if (length(dim(.x)) == 3L) {
.ext_surv_mat(.x, which.curve = 0.5)
} else {
.x
}
})
}
# All objects are now either 3d arrays or 2d matrices
# row-bind arrays and ensure all have same column names
# by automatically converting to pdf then back to surv
merge_cols = getFromNamespace(".merge_cols", ns = "distr6")
merged_array = merge_cols(distr_list, "surv")
# abind works with matrices as well
result$distr = abind::abind(merged_array, along = 1, force.array = FALSE)
}
}
set_class(result, "PredictionDataSurv")
}
#' @export
filter_prediction_data.PredictionDataSurv = function(pdata, row_ids, ...) {
keep = pdata$row_ids %in% row_ids
pdata$row_ids = pdata$row_ids[keep]
pdata$truth = pdata$truth[keep]
if (!is.null(pdata$crank)) {
pdata$crank = pdata$crank[keep]
}
if (!is.null(pdata$lp)) {
pdata$lp = pdata$lp[keep]
}
if (!is.null(pdata$distr)) {
distr = pdata$distr
if (testDistribution(distr)) { # distribution
ok = inherits(distr, c("VectorDistribution", "Matdist", "Arrdist")) &&
length(keep) > 1L # e.g.: Arrdist(1xYxZ) and keep = FALSE
if (ok) {
pdata$distr = distr[keep] # we can subset row/samples like this
} else {
pdata$distr = base::switch(keep, distr) # one distribution only
}
} else {
if (length(dim(distr)) == 2L) { # 2d matrix
pdata$distr = distr[keep, , drop = FALSE]
} else { # 3d array
pdata$distr = distr[keep, , , drop = FALSE]
}
}
}
pdata
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.