#' Compute conditional probabilities of the genotypes
#'
#' Conditional genotype probabilities are calculated for each marker
#' position and each individual given a map.
#'
#' @param input.map An object of class \code{mappoly.map}
#'
#' @param step Maximum distance (in cM) between positions at which
#' the genotype probabilities are calculated, though for
#' step = 0, probabilities are calculated only at the
#' marker locations.
#'
#' @param phase.config which phase configuration should be used. "best" (default)
#' will choose the phase configuration associated with the
#' maximum likelihood
#'
#' @param verbose if \code{TRUE} (default), current progress is shown; if
#' \code{FALSE}, no output is produced
#'
#' @return An object of class 'mappoly.genoprob' which has two elements: a tridimensional
#' array containing the probabilities of all possible genotypes for each individual
#' in each marker position; and the marker sequence with it's recombination frequencies
#'
#' @examples
#' ## tetraploid example
#' probs.t <- calc_genoprob(input.map = solcap.dose.map[[1]],
#' verbose = TRUE)
#' probs.t
#' ## displaying individual 1, 36 genotypic states
#' ## (rows) across linkage group 1 (columns)
#' image(t(probs.t$probs[,,1]))
#'
#' @author Marcelo Mollinari, \email{mmollin@ncsu.edu}
#'
#' @references
#' Mollinari, M., and Garcia, A. A. F. (2019) Linkage
#' analysis and haplotype phasing in experimental autopolyploid
#' populations with high ploidy level using hidden Markov
#' models, _G3: Genes, Genomes, Genetics_.
#' \doi{10.1534/g3.119.400378}
#'
#' @export calc_genoprob
calc_genoprob <- function(input.map, step = 0, phase.config = "best", verbose = TRUE)
{
if (!inherits(input.map, "mappoly.map")) {
stop(deparse(substitute(input.map)), " is not an object of class 'mappoly.map'")
}
if (verbose && !capabilities("long.double")){
cat("This function uses high precision calculations, but your system's architecture doesn't support long double allocation ('capabilities('long.double') = FALSE'). Running in low precision mode.\n")
}
## choosing the linkage phase configuration
LOD.conf <- get_LOD(input.map, sorted = FALSE)
if(phase.config == "best") {
i.lpc <- which.min(LOD.conf)
} else if (phase.config > length(LOD.conf)) {
stop("invalid linkage phase configuration")
} else i.lpc <- phase.config
ploidy <- input.map$info$ploidy
n.ind <- get(input.map$info$data.name, pos = 1)$n.ind
## This is used to calculate genoprobs for 'add_marker' function
if(length(input.map$info$mrk.names) == 2 & input.map$info$mrk.names[1] == input.map$info$mrk.names[2]){
D <- get(input.map$info$data.name, pos = 1)$geno.dose[input.map$maps[[1]]$seq.num,]
map.pseudo <- create_map(input.map, step, phase.config = i.lpc)
mrk.names <- names(map.pseudo)
n.mrk <- length(map.pseudo)
ind.names <- colnames(D)
dp <- get(input.map$info$data.name)$dosage.p1[input.map$maps[[i.lpc]]$seq.num]
dq <- get(input.map$info$data.name)$dosage.p2[input.map$maps[[i.lpc]]$seq.num]
phP <- lapply(input.map$maps[[i.lpc]]$seq.ph$P, function(x) x-1)
phQ <- lapply(input.map$maps[[i.lpc]]$seq.ph$Q, function(x) x-1)
seq.rf.pseudo <- input.map$maps[[i.lpc]]$seq.rf
}
else {
Dtemp <- get(input.map$info$data.name, pos = 1)$geno.dose[input.map$info$mrk.names,]
map.pseudo <- create_map(input.map, step, phase.config = i.lpc)
mrk.names <- names(map.pseudo)
n.mrk <- length(map.pseudo)
ind.names <- colnames(Dtemp)
D <- matrix(ploidy+1, nrow = length(map.pseudo), ncol = ncol(Dtemp),
dimnames = list(mrk.names, ind.names))
D[rownames(Dtemp), ] <- as.matrix(Dtemp)
dptemp <- get(input.map$info$data.name)$dosage.p1[input.map$maps[[i.lpc]]$seq.num]
dqtemp <- get(input.map$info$data.name)$dosage.p2[input.map$maps[[i.lpc]]$seq.num]
dq <- dp <- rep(ploidy/2, length(mrk.names))
names(dp) <- names(dq) <- mrk.names
dp[names(dptemp)] <- dptemp
dq[names(dqtemp)] <- dqtemp
phPtemp <- lapply(input.map$maps[[i.lpc]]$seq.ph$P, function(x) x-1)
phQtemp <- lapply(input.map$maps[[i.lpc]]$seq.ph$Q, function(x) x-1)
phP <- phQ <- vector("list", n.mrk)
for(i in 1:length(phP)){
phP[[i]] <- phQ[[i]] <- c(0:(ploidy/2 - 1))
}
names(phP) <- names(phQ) <- mrk.names
phP[rownames(Dtemp)] <- phPtemp
phQ[rownames(Dtemp)] <- phQtemp
seq.rf.pseudo <- mf_h(diff(map.pseudo))
}
for (j in 1:nrow(D)){
D[j, D[j, ] == input.map$info$ploidy + 1] <- dp[j] + dq[j] + 1 +
as.numeric(dp[j] == 0 || dq[j] == 0)
}
res.temp <- calc_genoprob_cpp(ploidy,
t(D),
phP,
phQ,
seq.rf.pseudo,
as.numeric(rep(0, choose(ploidy, ploidy/2)^2 * n.mrk * n.ind)),
verbose = verbose)
if(verbose) cat("\n")
dim(res.temp[[1]]) <- c(choose(ploidy,ploidy/2)^2,n.mrk,n.ind)
dimnames(res.temp[[1]]) <- list(kronecker(apply(combn(letters[1:ploidy],ploidy/2),2, paste, collapse = ""),
apply(combn(letters[(ploidy+1):(2*ploidy)],ploidy/2),2, paste, collapse = ""), paste, sep = ":"),
mrk.names, ind.names)
structure(list(probs = res.temp[[1]], map = map.pseudo), class = "mappoly.genoprob")
}
#' @export
print.mappoly.genoprob <- function(x, ...) {
cat(" This is an object of class 'mappoly.genoprob'")
cat("\n -----------------------------------------------------")
## printing summary
cat("\n No. genotypic classes: ", dim(x$probs)[1], "\n")
cat(" No. positions: ", dim(x$probs)[2], "\n")
cat(" No. individuals: ", dim(x$probs)[3], "\n")
cat(" -----------------------------------------------------\n")
}
#' Create a map with pseudomarkers at a given step
#' @keywords internal
create_map <- function(input.map, step = 0,
phase.config = "best")
{
## choosing the linkage phase configuration
LOD.conf <- get_LOD(input.map)
if(phase.config == "best") {
i.lpc <- which.min(LOD.conf)
} else if (phase.config > length(LOD.conf)) {
stop("invalid linkage phase configuration")
} else i.lpc <- phase.config
mrk.names <- get(input.map$info$data.name, pos = 1)$mrk.names[input.map$maps[[i.lpc]]$seq.num]
if(length(unique(input.map$maps[[1]]$seq.num)) == 1){
a <- rep(0,input.map$info$n.mrk)
names(a) <- mrk.names
return(a)
}
map <- c(0, cumsum(imf_h(input.map$maps[[i.lpc]]$seq.rf)))
names(map) <- mrk.names
if(round(step, 1) == 0)
return(map)
minloc <- min(map)
map <- map-minloc
a <- seq(floor(min(map)), max(map), by = step)
a <- a[is.na(match(a,map))]
names(a) <- paste("loc",a,sep = "_")
return(sort(c(a,map))+minloc)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.