#' Examining the clonal space occupied by specific clones
#'
#' This function calculates the relative clonal space occupied by the
#' clones. The grouping of these clones is based on the parameter
#' **clonalSplit**, at default, **clonalSplit** will group the clones
#' into bins of 1:10, 11:100, 101:1001, etc. To adjust the clones
#' selected, change the numbers in the variable split. If a matrix output
#' for the data is preferred, set **exportTable** = TRUE.
#'
#' @examples
#' #Making combined contig data
#' combined <- combineTCR(contig_list,
#' samples = c("P17B", "P17L", "P18B", "P18L",
#' "P19B","P19L", "P20B", "P20L"))
#' clonalProportion(combined, cloneCall = "gene")
#'
#' @param input.data The product of [combineTCR()],
#' [combineBCR()], or [combineExpression()].
#' @param clonalSplit The cut points for the specific clones
#' @param cloneCall How to call the clone - VDJC gene (**gene**),
#' CDR3 nucleotide (**nt**), CDR3 amino acid (**aa**),
#' VDJC gene + CDR3 nucleotide (**strict**) or a custom variable
#' in the data
#' @param chain indicate if both or a specific chain should be used -
#' e.g. "both", "TRA", "TRG", "IGH", "IGL"
#' @param group.by The variable to use for grouping
#' @param order.by A vector of specific plotting order or "alphanumeric"
#' to plot groups in order
#' @param exportTable Exports a table of the data into the global.
#' environment in addition to the visualization
#' @param palette Colors to use in visualization - input any
#' [hcl.pals][grDevices::hcl.pals]
#'
#' @import ggplot2
#' @importFrom stringr str_sort
#' @importFrom reshape2 melt
#' @importFrom dplyr bind_rows n
#'
#' @export
#' @concept Visualizing_Clones
#' @return ggplot of the space occupied by the specific rank of clones
clonalProportion <- function(input.data,
clonalSplit = c(10, 100, 1000, 10000, 30000, 100000),
cloneCall = "strict",
chain = "both",
group.by = NULL,
order.by = NULL,
exportTable = FALSE,
palette = "inferno") {
Con.df <- NULL
input.data <- .data.wrangle(input.data,
group.by,
.theCall(input.data, cloneCall, check.df = FALSE),
chain)
cloneCall <- .theCall(input.data, cloneCall)
sco <- is_seurat_object(input.data) | is_se_object(input.data)
if(!is.null(group.by) & !sco) {
input.data <- .groupList(input.data, group.by)
}
#Generating data matrix to store value
mat <- matrix(0, length(input.data), length(clonalSplit), dimnames = list(names(input.data),
paste0('[', c(1, clonalSplit[-length(clonalSplit)] + 1), ':', clonalSplit, ']')))
#Assigning the clonal grouping
input.data <- lapply(input.data, '[[', cloneCall)
input.data <- lapply(input.data, na.omit)
input.data <- lapply(input.data, as.data.frame(table))
for (i in seq_along(input.data)) {
input.data[[i]] <- rev(sort(as.numeric(input.data[[i]][,2])))
}
cut <- c(1, clonalSplit[-length(clonalSplit)] + 1)
for (i in seq_along(clonalSplit)) {
mat[,i] <- vapply(input.data, function (x)
sum(na.omit(x[cut[i]:clonalSplit[i]])), FUN.VALUE = numeric(1))
}
if (exportTable == TRUE) {
return(mat)
}
#Plotting
mat_melt <- melt(mat)
if(!is.null(order.by)) {
mat_melt <- .ordering.function(vector = order.by,
group.by = "Var1",
data.frame = mat_melt)
}
col <- length(unique(mat_melt$Var2))
plot <- ggplot(mat_melt, aes(x=as.factor(Var1), y=value, fill=Var2)) +
geom_bar(stat = "identity", position="fill",
color = "black", lwd= 0.25) +
scale_fill_manual(name = "Clonal Indices",
values = rev(.colorizer(palette,col))) +
xlab("Samples") +
ylab("Occupied Repertoire Space") +
theme_classic()
return(plot)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.