#' Run a single realisation of the spatial dengue model
#'
#' Main wrapper function for running a single realisation of the dengue spatial model, may take a while to run depending on specification
#' @param weekdates Two element vector of the start and end weeks of the simulation over which the model will be evaluated over
#' @param fitdat Data frame of the locations, numbers and timings (in weeks) of cases to fit the model to, see ?sgdat
#' @param pastdat Data frame of the locations, numbers and timings (in weeks) of all cases in the dataset (is used to generate the starting immunity profile), see ?sgdat
#' @param unipix Universal pixel lookup table, see ?make.unipix
#' @param pixdistmat A patch distance matrix, see example
#' @param steprun integer, number of days for which the simulation should run, excluding burn in period
#' @param seasonal_vector A vector of multipliers to change human-mosquito contact rate, for each day of the year, to account for seasonality
#' @param seasonal_start Day in the year for the start of the model
#' @param paramsList Optional parameter list. If not supplied returns to defaults, see tutorial for full parameter list, see ?model.run for full list and explanation of parameters
#' @details This function undertakes three main processes: i) fills in parameters with default options if not supplied, ii) generates a human movement matrix between patches,
#' ii) runs the model simulation.
#' within "paramsList()". Missing parameters will return to their default values. This function returns a outputs in a three element list giving:
#' i) daily counts of each model state (S, I, R, etc) sumed across the whole landscape, ii) daily counts of each model state for every patch,
#' iii) A treatment log (of length = number of steps) detailing which patches were treated each day
#' @keywords model simulation
#' @export
#' @examples
#' data(sgdat)
#' data(sgpop)
#' data(seasonal_vector)
#' data(sero)
#' sgpop <- pop.process(sgpop, agg = 10)
#' sero <-aggregate(sero, 10, fun = mean)
#' unipix <- make.unipix(sgpop)
#' pixdistmat <- distm(cbind(unipix$x, unipix$y))
#' sgdat <- data.frame(sgdat, patchID = apply(cbind(sgdat[, 3:2]), 1, pix.id.find, unipix))
#' weekdates <- c(40, 92)
#' # model run with default parameters
#' denmod_sim <- DEN.spatial.seasonal(weekdates,
#' fitdat = sgdat,
#' pastdat = sgdat,
#' sgpop,
#' unipix,
#' pixdistmat,
#' steprun = 365,
#' seasonal_vector,
#' seasonal_start = 1)
DEN.spatial.seasonal <- function(weekdates,
fitdat,
pastdat,
sgpop,
unipix,
pixdistmat,
steprun,
seasonal_vector,
seasonal_start,
paramsList = NULL){
### Part 1- supply default parameters of not supplied
#if(!exists("paramsList")){paramsList = list(NA)}
if(missing(paramsList)){paramsList = list(NA)}
# load fitted parameters
data(finalWeights)
# presample parameters
# if some parameters available, then adjust weighting to preferentially select complementary parameter values
pamnames = c("hometime", "pdetec", "mospdeath", "betaEnv_mean", "betaEnv_cor", "Mov_model_type")
apams <- pamnames %in% names(paramsList)
if(any(apams) & (sum(apams) != length(apams))){
Aweights = matrix(0, nrow = nrow(finalWeights), ncol = length(apams))
for(i in 1:length(apams)){
if(apams[i]){
fname = pamnames[i]
Aweights[, i] = unlist(1 - sqrt((finalWeights[names(finalWeights) == fname] - paramsList[names(paramsList) == pamnames[i]])^2))
}
}
Aweights = Aweights[, colSums(Aweights) != 0]
if(is.vector(Aweights)){Aweights = matrix(Aweights, ncol = 1)}
Aweights = apply(Aweights, 1, mean)
# final max
fmax = max(finalWeights$totaldevs)
# scale A weights to be on the same scale as totaldevs
Aweights = max(finalWeights$totaldevs) * (Aweights / max(Aweights))
# add finalweights and aweights together then scale back to original minimum and maximum
sample_probs = finalWeights$totaldevs + Aweights
sample_probs = sample_probs - min(sample_probs)
sample_probs = fmax * (sample_probs / max(sample_probs))
sampams = finalWeights[sample(1:nrow(finalWeights), 1, prob = sample_probs), ]
}else{
sampams <- finalWeights[sample(1:nrow(finalWeights), 1, prob = finalWeights$totaldevs), ]
}
# now assign parameters back to the list
if(!("hometime" %in% names(paramsList))){
paramsList = c(hometime = sampams$hometime, paramsList)
}
hometime = paramsList$hometime
if(!("pdetec" %in% names(paramsList))){
#paramsList = c(pdetec = pdetec <- function(x) rbeta(x, shape1 = 2.322835, shape2 = 28.2446),
# paramsList)
paramsList = c(pdetec = sampams$pdetec, paramsList)
}
pdetec = paramsList$pdetec
if(!("mospdeath" %in% names(paramsList))){
#paramsList = c(mospdeath = mospdeath <- function(x) rbeta(x, shape1 = 26.84987, shape2 = 107.3995),
# paramsList)
paramsList = c(mospdeath = sampams$mospdeath, paramsList)
}
mospdeath = paramsList$mospdeath
if(!("stim" %in% names(paramsList))){
paramsList = c(stim = list(as.vector(sero)[unipix$pixID]),
paramsList)
}
stim = paramsList$stim
#print(paste0("stim=", mean(stim)))
if(!("betaEnv_mean" %in% names(paramsList))){
bmean_1 = sampams$betaEnv_mean
}else{
bmean_1 = as.numeric(paramsList$betaEnv_mean)
}
if(!("betaEnv_cor" %in% names(paramsList))){
bcorrelation = sampams$betaEnv_cor
}else{
bcorrelation = as.numeric(paramsList$betaEnv_cor)
}
# check to make sure user only specifies postiive numbers in seasonal_vector
if(any(seasonal_vector < 0)){
print("warning, negatives in seasonal_vector converted to 0")
seasonal_vector[seasonal_vector < 0] = 0
}
if(seasonal_start < 1){
print("warning, seasonal start must be greater than 0, setting to 1")
seasonal_start = 1
}
# process seasonal vector to be same length as steprun
if(length(seasonal_vector[seasonal_start:length(seasonal_vector)]) < steprun){
seasonal_vector = rep(seasonal_vector, ceiling(steprun / length(seasonal_vector[seasonal_start:length(seasonal_vector)]))) # restart loop if model needs to run multiple seasons
}
# now trim to relevant time window
seasonal_vector = seasonal_vector[seasonal_start:(seasonal_start + steprun - 1)]
# scale seasonal vector so the mean of seasonal_vector = 1
seasonal_vector = seasonal_vector / mean(seasonal_vector)
# now calculate full timeseries of bmean
bmean_ts <- bmean_1 * seasonal_vector
# minimum floor at 0.1 ! depricated
#bmean_ts[bmean_ts < 0.1] = 0.1
betaEnv = betaEnv.generate(bmean = mean(bmean_ts), bcorrelation = bcorrelation,
stim = stim)
paramsList = c(betaEnv, paramsList)
if(!("drugtreat" %in% names(paramsList))){
paramsList = c(drugtreat = list(data.frame(EffCoverage = 0,
Duration = 0,
Radius = 0,
Delay = NA)),
paramsList)
}
drugtreat_Eff = as.numeric(paramsList$drugtreat[1])
drugtreat_Dur = as.numeric(paramsList$drugtreat[2])
drugtreat_Rad = as.numeric(paramsList$drugtreat[3])
drugtreat_Del = as.numeric(paramsList$drugtreat[4])
if(!("vectreat" %in% names(paramsList))){
paramsList = c(vectreat = list(data.frame(EffCoverage = 0,
Duration = 0,
Radius = 0,
Delay = NA)),
paramsList)
}
vectreat_Eff = as.numeric(paramsList$vectreat[1])
vectreat_Dur = as.numeric(paramsList$vectreat[2])
vectreat_Rad = as.numeric(paramsList$vectreat[3])
vectreat_Del = as.numeric(paramsList$vectreat[4])
if(!("StopCriteria" %in% names(paramsList))){
paramsList = c(StopCriteria = sum(unipix$pop),paramsList)
}
StopCriteria = paramsList$StopCriteria
# !!!no longer used
#if(!("startTable" %in% names(paramsList))){
# paramsList = c(startTable = list(case.backtrack.time(casedat, weekdates[1], unipix, stim, betaEnv, mospdeath, hometime)),
# paramsList)
#}
#startTable = paramsList$startTable
if(!("func_IIP" %in% names(paramsList))){
paramsList = c(func_IIP = func_IIP <- function(times){plnorm(times, meanlog = log(5.9), sdlog = 0.045)},
paramsList)
}
func_IIP = paramsList$func_IIP
if(!("func_EIP" %in% names(paramsList))){
paramsList = c(func_EIP = func_EIP <- function(times){plnorm(times, meanlog = log(7), sdlog = 0.21)},
paramsList)
}
func_EIP = paramsList$func_EIP
if(!("Mov_model_type" %in% names(paramsList))){
paramsList = c(Mov_model_type = sampams$Mov_model_type,
paramsList)
}
Mov_model_type = c("exponential", "gravity", "radiation")[paramsList$Mov_model_type]
### Part 2- model set up
# pre calculate movement matrices from each of these unique patches
mm_list <- move.matrix.gene(unipix, hometime, Mov_model_type)
mm_list2 <- mm_list[[1]]
mm_list_cum <- mm_list[[2]]
## Setting up human model compartments
# humans - susceptible, infectious, Recovered, Recovered temporary (drugs)
sing_S = unipix$pop
sing_I = matrix(0, ncol = nrow(unipix), nrow = 15)
sing_R = rep(0, nrow(unipix))
sing_Rt = sing_Rt = matrix(0, nrow = 40, ncol = nrow(unipix)) # 40 day maximum effect of prophylactics
# Setting up mosquito model compartments
# mosquito compartments - susceptible, exposed, infectious
# susceptible mosquito populations modelled as inexhaustible and directly proportional to human population
mos_S = unipix$pop
mos_E = matrix(0, ncol = nrow(unipix), nrow = 15)
mos_I = rep(0, nrow(unipix))
# Accounting for prior immunity
pims = round(sing_S * stim, 0)
sing_S = sing_S - pims
sing_R = sing_R + pims
## Initial conditions:
# 01 calculate the total numbers of various different states at the begining
start_sing = data.frame(Number = fitdat$Number_of_cases[fitdat$Week == weekdates[1]],
Location = fitdat$patchID[fitdat$Week == weekdates[1]])
start_sing = aggregate(start_sing$Number, list(start_sing$Location), sum)
start_sing = data.frame(Number_I = start_sing$x,
Number_trueI = round(start_sing$x / (8 * pdetec), 0) - start_sing$x, # need to times pdetec by 8 to go from daily value to value over all symptomatic days
Location = start_sing$Group.1,
Timing = sample(1:15, nrow(start_sing), replace = T),
Pop = unipix$pop[match(start_sing$Group.1, unipix$patchID)])
# if probability of detection (over course of illness) is greater than 1 (i.e. pdetec > 1/8) set extra true cases to 0
if(nrow(start_sing) > 0){
if(any(start_sing$Number_trueI < 0)){start_sing$Number_trueI[start_sing$Number_trueI < 0] = 0}
}else{
if(start_sing$Number_trueI < 0){start_sing$Number_trueI = 0}
}
# add mosquito compartments
# how many mosquitoes would need to have been infected to give this number of cases?
# 1) calculate Rt
VC <- (1 * (5.457631 / 8) * 0.2 ^ 2 * (1 - mospdeath) ^ 7) / (-log((1 - mospdeath)))
Rt <- 8 * VC * (1 - mean(stim))
#print(paste0("Rt=", Rt))
# 2) calculate the number of humans who must have been infected 1 transmission generation ago
Inf_1g <- (start_sing$Number_I + start_sing$Number_trueI) / Rt
# number of exposed mosquitoes over their 5.45 effective infectious days
start_sing$Number_mosE <- round(5.457631 * Inf_1g * mean(betaEnv), 0)
# and how many of these have survived EIP?
start_sing$Number_mosI <- round(start_sing$Number_mosE * (1 - mospdeath) ^ 7, 0)
# 02 allocate these in space and time
for(i in 1:nrow(start_sing)){
# frist allocate the reported cases
fmove = mm_list2[[start_sing$Location[i]]]
# allocate reported Infectious cases first
sing_I[cbind(start_sing$Timing[i], start_sing$Location[i])] = sing_I[cbind(start_sing$Timing[i], start_sing$Location[i])] + start_sing$Number_I[i]
# then unreported infectious cases
locsam <- sample(1:nrow(unipix), sum(start_sing$Number_trueI[i]), prob = fmove, replace = T)
timsam <- sample(1:15, sum(start_sing$Number_trueI[i]), replace = T)
for(k in 1:length(locsam)){
sing_I[cbind(timsam[k], locsam[k])] = sing_I[cbind(timsam[k], locsam[k])] + 1
}
# then infectious mosquitoes
locsam <- sample(1:nrow(unipix), sum(start_sing$Number_mosI[i]), prob = fmove, replace = T)
for(k in 1:length(locsam)){
mos_I[locsam[k]] = mos_I[locsam[k]] + 1
}
# then exposed mosquitoes
locsam <- sample(1:nrow(unipix), sum(start_sing$Number_mosE[i]), prob = fmove, replace = T)
timsam <- sample(1:15, sum(start_sing$Number_mosE[i]), replace = T)
for(k in 1:length(locsam)){
mos_E[cbind(timsam[k], locsam[k])] = mos_E[cbind(timsam[k], locsam[k])] + 1
}
}
### Part 2: main model run ###
steps = steprun
# set up vectors to hold results
totals = data.frame(S = rep(NA, steps),
I = rep(NA, steps),
R = rep(NA, steps),
Rt = rep(NA, steps),
D = rep(NA, steps),
newD = rep(NA, steps),
mosE = rep(NA, steps),
mosI = rep(NA, steps))
hold = data.frame(S = rep(NA, nrow(unipix)),
I = rep(NA, nrow(unipix)),
R = rep(NA, nrow(unipix)),
Rt = rep(NA, nrow(unipix)),
D = rep(NA, nrow(unipix)),
newD = rep(NA, nrow(unipix)),
mosE = rep(NA, nrow(unipix)),
mosI = rep(NA, nrow(unipix)))
detailed_totals <- list()
for(i in 1:steps){detailed_totals[[i]] = hold}
# tracks which patches have been treated at each timestep
treatlog_drug <- list()
treatlog_vec <- list()
treatlog_drug2 <- list()
treatlog_vec2 <- list()
# add detected state
sing_D <- matrix(0, nrow = nrow(sing_I), ncol = ncol(sing_I))
# total population size
tpop = sum(sing_S, sing_I, sing_R, sing_Rt)
# main timestep loop
for(i in 1:steps){
# SIR-SEI formulation
# Part 1 calculates stage transition probabilities
# Part 2 updates states
# Part 1 stage transition probabilities
#calculate new beta at each stage
betaEnv = betaEnv.generate(bmean = bmean_ts[i], bcorrelation = bcorrelation,
stim = stim)
# 1A- P(mosquito infected)
mosInfProb <- mos.inf.prob(sing_I, betaEnv, unipix, mm_list2, mm_list_cum)
# 1B- P(mosquito completes EIP)
# func_EIP(days)
# 1C- P(mosqutio dies naturally)
#mosDeathProb <- mospdeath(nrow(unipix))
mosDeathProb <- rep(mospdeath, nrow(unipix))
# 1D- calculate drug targetted patches and P(mosquto dies from RVC) and P(human treated with drugs)
# don't bother doing if Effective coverage = 0
if(sum(vectreat_Eff, drugtreat_Eff) != 0){
# identify detected locations
if(i == 1){newsingDs = matrix(0, nrow = nrow(sing_D), ncol = ncol(sing_D))}
Dspots1 <- find.Dspots(newsingDs, pixdistmat, radius = drugtreat_Rad)
Dspots2 <- find.Dspots(newsingDs, pixdistmat, radius = vectreat_Rad)
mosDeathProbLocal <- rep(0, nrow(unipix))
humDrugTreatProbLocal <- rep(0, nrow(unipix))
treatlog_drug2[[i]] = NA
treatlog_vec2[[i]] = NA
# Drugs
if(sum(!is.na(Dspots1)) > 0){
# assign to treatment log
treatlog_drug[[i]] = Dspots1
# assign drugs (+/- delay between patient detection and local area visit)
if((sum(!is.na(drugtreat_Del))> 0) & i > drugtreat_Del){ # can only start if drugtreat_Del- days in
scheduleday = i - drugtreat_Del
if(!all(is.na(treatlog_drug[[scheduleday]]))){
humDrugTreatProbLocal[treatlog_drug[[scheduleday]]] <- drugtreat_Eff
treatlog_drug2[[i]] = treatlog_drug[[scheduleday]]
}
}
}else{treatlog_drug[[i]] = NA
}
# Vector control
if(sum(!is.na(Dspots2)) > 0){
# assign to treatment log
treatlog_vec[[i]] = Dspots2
# assign drugs (+/- delay between patient detection and local area visit)
if( (sum(!is.na(vectreat_Del))> 0) & i > vectreat_Del){ # can only start if vectreat_Del- days in
scheduleday = i - vectreat_Del
if(!all(is.na(treatlog_vec[[scheduleday]]))){
mosDeathProbLocal[treatlog_vec[[scheduleday]]] <- vectreat_Eff
treatlog_vec2[[i]] = treatlog_vec[[scheduleday]]
}
}
}else{treatlog_vec[[i]] = NA
}
}else{
Dspots1 = NA
Dspots2 = NA
mosDeathProbLocal <- rep(0, nrow(unipix))
humDrugTreatProbLocal <- rep(0, nrow(unipix))
treatlog_drug[[i]] = NA
treatlog_vec[[i]] = NA
treatlog_drug2[[i]] = NA
treatlog_vec2[[i]] = NA
}
# 1F- P(human infected)
if(sum(mos_I) > 0){humInfProb <- hum.inf.prob(mos_I, betaEnv, unipix, mm_list2, mm_list_cum)} else{humInfProb = 0}
# 1G- P(human completes IIP)
#func_IIP(days)
# 1H- P(symptomatic human detected)
#pdetec(1)
# Part 2 state transitions
# MOSQUITO
#(S never changes so not here)
# mos E
#print(paste0("1_mos_E=", sum(mos_E)))
if (any(is.na(mos_E))) {
for (i in dim(mos_E)[[2]]){
for (j in 1:15){
mos_E[,i][j] <- ifelse(is.na(mos_E[,i][j]), 0, mos_E[,i][j])
}
}
}
mos_E_IO <- SpatialDengue::multinom(list(list(mos_S, mosInfProb),
list(mos_E, func_EIP),
list(mos_E, mospdeath),
list(mos_E, mosDeathProbLocal)),
type = "mos_E")
#mos_E = mos_E + mos_E_IO[[1]] - mos_E_IO[[2]] - mos_E_IO[[3]] - mos_E_IO[[4]]
# extras includes those that reach the end of the holding vector but havent completes EIP or dies
# (so we automatically advance them to the next state)
extraMosE_I = mos_E[nrow(mos_E), ] - mos_E_IO[[2]][nrow(mos_E), ] - mos_E_IO[[3]][nrow(mos_E), ] - mos_E_IO[[4]][nrow(mos_E), ]
mos_E = transition(base = mos_E, plus = mos_E_IO[[1]], minus = (mos_E_IO[[2]] + mos_E_IO[[3]] + mos_E_IO[[4]]))
#print(paste0("mos_E_IO[[1]]=", sum(mos_E_IO[[1]])))
#print(paste0("mos_E_IO[[2]]=", sum(mos_E_IO[[2]])))
#print(paste0("mos_E_IO[[3]]=", sum(mos_E_IO[[3]])))
#print(paste0("mos_E_IO[[4]]=", sum(mos_E_IO[[4]])))
# mos_I
mos_I_O <- SpatialDengue::multinom(list(list(mos_I, mospdeath),
list(mos_I, mosDeathProbLocal)),
type = "mos_I")
mos_I = mos_I + colSums(mos_E_IO[[2]]) - mos_I_O[[1]] - mos_I_O[[2]] + extraMosE_I
#print(paste0("mos_I=", sum(mos_I)))
#print(paste0("2_mos_E=", sum(mos_E)))
#print(paste0("mosInfProb=", mean(mosInfProb)))
# HUMAN
# sing_S
sing_S_IO <- SpatialDengue::multinom(list(list(sing_S, humInfProb),
list(sing_S, humDrugTreatProbLocal),
list(sing_Rt, function(times) pnorm(times, drugtreat_Dur, 0))),
type = "sing_S")
#print(paste0("humInfProb=", mean(humInfProb)))
#print(paste0("sing_S=", sum(sing_S)))
#print(paste0("sing_S_IO[[2]]=", sum(sing_S_IO[[2]])))
#print(paste0("sing_S_IO[[3]]=", sum(sing_S_IO[[3]])))
#print(paste0("sing_I=", sum(sing_I)))
#print(i)
if(any((sing_S - sing_S_IO[[2]] - sing_S_IO[[3]]) < 0)){
break}
sing_S = sing_S - sing_S_IO[[2]] - sing_S_IO[[3]] + colSums(sing_S_IO[[1]])
# sing I (only drop out at 8 days after symptom onset, so no multinomials needed)
sing_I_O <- Hum.Drug.Treat.MN(sing_I, humDrugTreatProbLocal)
extraHumI_R = sing_I[nrow(sing_I), ] - sing_I_O[nrow(sing_I), ]
sing_I = transition(base = sing_I, plus = sing_S_IO[[2]], minus = sing_I_O)
# sing_R
sing_R = sing_R + colSums(sing_I_O) + extraHumI_R
# sing_Rt
extraHumR_S = sing_Rt[nrow(sing_Rt), ] - sing_S_IO[[1]][nrow(sing_Rt), ]
sing_S = sing_S + extraHumR_S
sing_Rt = transition(base = sing_Rt, plus = sing_S_IO[[3]], minus = sing_S_IO[[1]])
# sing_D
# who has completed their EIP and gets detected
# first transition Sing_D so it matches sing_I
sing_D = transition(sing_D, plus = 0, minus = 0)
# only look at infecteds that have not already been detected
sing_I2 = sing_I - sing_D
#newsignDopts <- cbind(as.vector(sing_I2), rep(func_IIP(1:nrow(sing_I2)), ncol(sing_I2)) * pdetec(length(sing_I2)))
#newsignDopts <- cbind(as.vector(sing_I2), rep(func_IIP(1:nrow(sing_I2)), ncol(sing_I2)) * pdetec(1))
newsignDopts <- cbind(as.vector(sing_I2), rep(func_IIP(1:nrow(sing_I2)), ncol(sing_I2)) * pdetec)
poscells <- newsignDopts[, 1] > 0
newsingDs = rep(0, length(newsignDopts[, 1]))
if(sum(poscells) > 0){
if(sum(poscells) == 1){newsingDs[poscells] = rbinom(1, newsignDopts[poscells, 1], newsignDopts[poscells, 2])}else{
newsingDs[poscells] = apply(newsignDopts[poscells, ], 1, function(u) rbinom(1, u[1], u[2]))
}
}
newsingDs = matrix(newsingDs, nrow = nrow(sing_D), ncol = ncol(sing_D))
sing_D = sing_D + newsingDs
# store results
# broad summary
totals[i, ] = c(sum(sing_S), sum(sing_I), sum(sing_R), sum(sing_Rt), sum(sing_D), sum(newsingDs),
sum(mos_E), sum(mos_I))
# detailed summary
detailed_totals[[i]][, 1:8] = cbind(sing_S, colSums(sing_I), sing_R, colSums(sing_Rt), colSums(sing_D), colSums(newsingDs),
colSums(mos_E), mos_I)
# breaking if StopCriteria are breached (efficiency measure)
if(sum(totals$newD[1:i]) > StopCriteria){
return(NA)
}
## mF5I- model checks
# check no negative cases
if(any(c(sing_S, sing_I, sing_R, sing_Rt, sing_D) < 0)){
print(paste("failed at timestep", i, "due to negative people"))
break}
# check for NAs
if(any(is.na(sing_S), is.na(sing_I), is.na(sing_R), is.na(sing_Rt), is.na(sing_D))){
print(paste("failed at timestep", i, "due to NAs in population vectors"))
break}
# check dimensions of dataframes are consistent
if(any(c(nrow(sing_I), nrow(mos_E)) != 15)){
print(paste("failed at timestep", i, "due to changing matrix size"))
print(c(nrow(sing_I), nrow(mos_E)))
break}
# check human population size is consistent
if(sum(sing_S, sing_I, sing_R, sing_Rt) != tpop){
print(paste("failed at timestep", i, "due to changing human population size"))
break}
}
# compile treatlog
treatlog = list(drug1 = treatlog_drug,
drug2 = treatlog_drug2,
vec1 = treatlog_vec,
vec2 = treatlog_vec2)
# collate final results
templist <- list(sing_S,
sing_I,
sing_R,
sing_Rt,
sing_D,
newsingDs,
mos_S,
mos_E,
mos_I,
totals,
detailed_totals,
treatlog)
names(templist) = c("sing_S",
"sing_I",
"sing_R",
"sing_Rt",
"sing_D",
"newsingDs",
"mos_S",
"mos_E",
"mos_I",
"totals",
"detailed_totals",
"treatlog")
mainmodrun <- templist
# if StopCriteria are exceeded, model.run will return NA (useful for fitting),
# otherwise, Part 4:results:
if(length(mainmodrun) > 1){
# Return results
model_outlist <- list()
model_outlist[[1]] <- mainmodrun$totals
model_outlist[[2]] <- mainmodrun$detailed_totals
model_outlist[[3]] = mainmodrun$treatlog
names(model_outlist) = c("Poptotals",
"Patchtotals",
"treatlog")
return(model_outlist)
}else{return(NA)}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.