#' The exponentiated XLindley family
#'
#' @author Manuel Gutierrez Tangarife, \email{mgutierrezta@unal.edu.co}
#'
#' @description
#' The function \code{EXL()} defines The exponentiated XLindley,
#' a two parameter distribution, for a \code{gamlss.family} object
#' to be used in GAMLSS fitting
#' using the function \code{gamlss()}.
#'
#' @param mu.link defines the mu.link, with "log" link as the default
#' for the mu parameter.
#' @param sigma.link defines the sigma.link, with "log" link as the default
#' for the sigma.
#'
#' @references
#' Alomair, A. M., Ahmed, M., Tariq, S., Ahsan-ul-Haq, M., & Talib, J.
#' (2024). An exponentiated XLindley distribution with properties,
#' inference and applications. Heliyon, 10(3).
#'
#' @seealso \link{EXL}.
#'
#' @details
#' The exponentiated XLindley with parameters \code{mu} and \code{sigma}
#' has density given by
#'
#' \deqn{f(x) = \frac{\sigma\mu^2(2+\mu + x)\exp(-\mu x)}{(1+\mu)^2}\left[1-
#' \left(1+\frac{\mu x}{(1 + \mu)^2}\right) \exp(-\mu x)\right] ^ {\sigma-1} }
#' for \eqn{x \geq 0}, \eqn{\mu \geq 0} and \eqn{\sigma \geq 0}.
#'
#' Note: In this implementation we changed the original parameters
#' \eqn{\delta} for \eqn{\mu} and \eqn{\alpha} for \eqn{\sigma} we
#' did it to implement this distribution within gamlss framework.
#'
#' @returns Returns a gamlss.family object which can be used to fit a
#' EXL distribution in the \code{gamlss()} function.
#'
#' @example examples/examples_EXL.R
#'
#' @importFrom gamlss.dist checklink
#' @importFrom gamlss rqres.plot
#' @export
EXL <- function(mu.link="log", sigma.link="log") {
mstats <- checklink("mu.link", "Exponentiated XLindley", substitute(mu.link), c("log", "identity"))
dstats <- checklink("sigma.link", "Exponentiated XLindley", substitute(sigma.link), c("log", "identity"))
structure(list(family = c("EXL", "Exponentiated XLindley"),
parameters = list(mu=TRUE, sigma=TRUE),
nopar = 2,
type = "Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
dldm = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dEXL(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00000001)
dldm <- as.vector(attr(dm, "gradient"))
dldm
},
d2ldm2 = function(y, mu, sigma) {
dm <- gamlss::numeric.deriv(dEXL(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00000001)
dldm <- as.vector(attr(dm, "gradient"))
d2ldm2 <- -dldm * dldm
d2ldm2 <- ifelse(d2ldm2 < -1e-15, d2ldm2, -1e-15)
d2ldm2
},
dldd = function(y, mu, sigma, nu) {
dd <- gamlss::numeric.deriv(dEXL(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.00000001)
dldd <- as.vector(attr(dd, "gradient"))
dldd
},
d2ldd2 = function(y,mu,sigma) {
dd <- gamlss::numeric.deriv(dEXL(y, mu, sigma, log=TRUE),
theta="sigma",
delta=0.00000001)
dldd <- as.vector(attr(dd, "gradient"))
d2ldd2 <- - dldd * dldd
d2ldd2 <- ifelse(d2ldd2 < -1e-15, d2ldd2, -1e-15)
d2ldd2
},
d2ldmdd = function(y,mu,sigma) {
dm <- gamlss::numeric.deriv(dEXL(y, mu, sigma, log=TRUE),
theta="mu",
delta=0.00000001)
dldm <- as.vector(attr(dm, "gradient"))
dd <- gamlss::numeric.deriv(dEXL(y, mu, sigma,log=TRUE),
theta="sigma",
delta=0.00000001)
dldd <- as.vector(attr(dd, "gradient"))
d2ldmdd <- - dldm * dldd
d2ldmdd <- ifelse(d2ldmdd < -1e-15, d2ldmdd, -1e-15)
d2ldmdd
},
G.dev.incr = function(y, mu, sigma, ...) -2*dEXL(y, mu, sigma, log=TRUE),
rqres = expression(rqres(pfun="pEXL", type="Continuous", y=y, mu=mu, sigma=sigma)),
mu.initial = expression( mu <- rep(1, length(y)) ),
sigma.initial = expression( sigma <- rep(1, length(y)) ),
mu.valid = function(mu) all(mu >= 0),
sigma.valid = function(sigma) all(sigma > 0),
y.valid = function(y) all(y >= 0)
),
class = c("gamlss.family", "family"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.