R/text_mining.R

Defines functions plot_topic_prop plot_topic_words plot_ec plot_k_result my_searchK word_prop_scatter plot_wordcloud

Documented in my_searchK plot_ec plot_k_result plot_topic_prop plot_topic_words plot_wordcloud word_prop_scatter

#' Plot word cloud for a column
#'
#' Plots a word cloud for columns in the metadata that don't have a controlled
#' vocabulary. I guess maybe I should start using a controlled vocabulary.
#'
#' @inheritParams wordcloud::wordcloud
#' @param sheet The sheet read in from Google Sheets as a tibble.
#' @param col_use Which column to break down into words for word cloud. Tidyeval
#' is supported.
#' @param species_use Which species to filter by.
#' @param year_min Minimum year. The range of years will be >= year_min and
#' < year_max.
#' @param year_max Maximum year.
#' @param other_stop_words A character vector for other stop words besides the
#' stop_words data frame that comes with tidytext.
#' @param seed Random seed to use.
#' @param ... Other arguments passed to \code{wordcloud::wordcloud}.
#' @return A html widget.
#' @importFrom dplyr distinct anti_join
#' @importFrom scales brewer_pal
#' @export
plot_wordcloud <- function(sheet, col_use = title, species_use = "all",
                           year_min = NA, year_max = NA,
                           other_stop_words = NULL, seed = 1,
                           scale = c(6, 0.1), min.freq = 1, ...) {
  .pkg_check("tidytext")
  .pkg_check("wordcloud")
  title <- year <- species <- word <- NULL
  col_use <- enquo(col_use)
  df <- sheet %>%
    select(title, year, species, !!col_use) %>%
    filter(!is.na(!!col_use))
  if (species_use != "all") {
    df <- df %>%
      filter(species == species_use)
  }
  if (!is.na(year_min) && !is.na(year_max)) {
    df <- df %>%
      filter(year >= year_min, year < year_max)
  }
  df <- df %>%
    select(-species, -year) %>%
    distinct() %>%
    tidytext::unnest_tokens(output = "word", input = !!col_use) %>%
    anti_join(tidytext::stop_words, by = "word") %>%
    count(word, name = "freq")
  if (!is.null(other_stop_words)) {
    df <- df %>%
      filter(!word %in% other_stop_words)
  }
  set.seed(seed)
  wordcloud::wordcloud(words = df$word, freq = df$freq, scale = scale,
                       min.freq = min.freq,
                       colors = brewer_pal(palette = "Dark2")(8),
                       random.color = TRUE, ...)
}

#' Compare word frequencies between current era and prequel
#'
#' @inheritParams plot_wordcloud
#' @inheritParams pubs_per_cat
#' @param era Which column indicates whether the item is from prequel or current era.
#' Can be character, factor, or logical. Tidyeval is supported.
#' @return A ggplot2 object.
#' @importFrom dplyr ungroup
#' @importFrom ggplot2 geom_abline coord_equal
#' @importFrom ggrepel geom_text_repel
#' @export
word_prop_scatter <- function(pubs, col_use = title, era = sheet, n_top = 20,
                              other_stop_words = NULL) {
  .pkg_check("tidytext")
  date_published <- word <- n <- title <- sheet <- prop <- label <- NULL
  col_use <- enquo(col_use)
  era <- enquo(era)
  eras <- pubs %>% pull(!!era) %>% unique()
  if (length(eras) != 2L) stop("Column ", quo_name(era), " should only have 2 unique values.")
  eras <- sort(as.character(eras))
  freqs <- pubs %>%
    filter(!is.na(!!col_use)) %>%
    select(date_published, !!col_use, !!era) %>%
    tidytext::unnest_tokens("word", input = !!col_use) %>%
    anti_join(tidytext::stop_words, by = "word") %>%
    count(!!era, word) %>%
    # Calculate the proportion
    group_by(!!era) %>%
    mutate(prop = n/sum(n)) %>%
    ungroup() %>%
    select(word, !!era, prop) %>%
    pivot_wider(names_from = quo_name(era), values_from = "prop", values_fill = list(prop = 0)) %>%
    mutate(dif = !!sym(eras[1]) - !!sym(eras[2]),
           label = case_when(row_number(desc(dif)) <= n_top/2 ~ word,
                             row_number(dif) <= n_top/2 ~ word,
                             TRUE ~ ""))
  if (!is.null(other_stop_words)) {
    freqs <- freqs %>%
      filter(!word %in% other_stop_words)
  }
  ggplot(freqs, aes(!!sym(eras[1]), !!sym(eras[2]))) +
    geom_point(alpha = 0.3) +
    geom_abline(slope = 1, intercept = 0, color = "red") +
    geom_text_repel(aes(label = label)) +
    coord_equal()
}

#' Find the appropriate number of topics for stm
#'
#' This function is just like stm's searchK, but it uses tidyverse and allows a
#' formula for prevalence. Adapted from Julia Silge's blog.
#'
#' @param documents Quanteda dfm object.
#' @param K Numeric vector of numbers of topics to try.
#' @param prevalence Formula of topic prevalence.
#' @param seed1 Random seed to use.
#' @param ... Other arguments to pass to \code{stm::stm}.
#' @return A tibble with the metrics output by searchK, plus a column for the
#' fitted model for each value of K tried.
#' @export

my_searchK <- function(documents, K, prevalence = ~ 1, seed1 = 19, ...) {
  .pkg_check("quanteda")
  .pkg_check("stm")
  heldout <- stm::make.heldout(documents, seed = seed1)
  dc <- heldout$documents
  vocab <- heldout$vocab
  meta <- quanteda::docvars(documents)
  fun <- function(.x, seed1, prevalence, ...) {
    stm::stm(dc, vocab = vocab, K = .x, seed = seed1,
             prevalence = prevalence, data = meta, ...)
  }
  many_models <- tibble(K = sample(K, length(K), replace = FALSE)) %>%
    mutate(topic_model = furrr::future_map(K, fun, seed1 = seed1,
                                           prevalence = prevalence,
                                           .options = furrr_options(seed = seed1), ...))
  k_result <- many_models %>%
    mutate(exclusivity = map(topic_model, stm::exclusivity),
           semantic_coherence = map(topic_model, stm::semanticCoherence, dc),
           eval_heldout = map(topic_model, stm::eval.heldout, heldout$missing),
           residual = map(topic_model, stm::checkResiduals, dc),
           bound =  map_dbl(topic_model, function(x) max(x$convergence$bound)),
           lfact = map_dbl(topic_model, function(x) lfactorial(x$settings$dim$K)),
           lbound = bound + lfact,
           iterations = map_dbl(topic_model, function(x) length(x$convergence$bound))) %>%
    arrange(K)
  k_result
}

#' Plot the metrics for each K tried
#'
#' Adapted from Julia Silge's blog.
#'
#' @param k_result output of my_searchK
#' @return A ggplot object.
#' @export

plot_k_result <- function(k_result) {
  k_result %>%
    transmute(K,
              `Lower bound` = lbound,
              Residuals = map_dbl(residual, "dispersion"),
              `Semantic coherence` = map_dbl(semantic_coherence, mean),
              `Held-out likelihood` = map_dbl(eval_heldout, "expected.heldout")) %>%
    gather(Metric, Value, -K) %>%
    ggplot(aes(K, Value, color = Metric)) +
    geom_line(size = 1.5, alpha = 0.7, show.legend = FALSE) +
    facet_wrap(~Metric, scales = "free_y") +
    labs(x = "K (number of topics)",
         y = NULL,
         title = "Model diagnostics by number of topics")
}

#' Plot exclusivity vs. semantic coherence for different K's
#'
#' Adapted from Julia Silge's blog.
#'
#' @inheritParams plot_k_result
#' @param Ks Numeric vector of number of topics to plot.
#' @return A ggplot object
#' @export
plot_ec <- function(k_result, Ks) {
  k_result %>%
    select(K, exclusivity, semantic_coherence) %>%
    filter(K %in% Ks) %>%
    unnest(cols = c("exclusivity", "semantic_coherence")) %>%
    mutate(K = as.factor(K)) %>%
    ggplot(aes(semantic_coherence, exclusivity, color = K, shape = K)) +
    geom_point(size = 2, alpha = 0.7) +
    labs(x = "Semantic coherence",
         y = "Exclusivity",
         title = "Comparing exclusivity and semantic coherence",
         subtitle = "Models with fewer topics have higher semantic coherence for more topics, but lower exclusivity")
}

#' Plot probability of each word in each topic
#'
#' Adapted from Julia Silge's blog.
#'
#' @inheritParams pubs_on_map
#' @param stm_res A `STM` object.
#' @param n_top Number of top words to show per topic.
#' @return A ggplot object
#' @export
plot_topic_words <- function(stm_res, n_top = 10, ncol = 5) {
  .pkg_check("tidytext")
  td_beta <- tidytext::tidy(stm_res)
  td_beta %>%
    group_by(topic) %>%
    top_n(n_top, beta) %>%
    ungroup() %>%
    mutate(topic = paste0("Topic ", topic),
           topic = fct_relevel(topic, paste0("Topic ",
                                             seq_len(ncol(stm_res$theta)))),
           term = tidytext::reorder_within(term, beta, topic)) %>%
    ggplot(aes(beta, term)) +
    geom_segment(aes(yend = term), xend = 0, show.legend = FALSE) +
    geom_point(color = "blue") +
    facet_wrap(~ topic, scales = "free_y", ncol = ncol) +
    tidytext::scale_y_reordered() +
    scale_x_continuous(expand = expansion(mult = c(0, 0.05))) +
    labs(x = NULL, y = expression(beta),
         title = "Highest word probabilities for each topic",
         subtitle = "Different words are associated with different topics")
}

#' Plot expected topic proportion in the corpus
#'
#' This is equivalent to `plot(stm_res, type = "symmary")`, but it uses `ggplot2`
#' and looks nicer. Adapted from Julia Silge's blog.
#'
#' @inheritParams plot_topic_words
#' @param x_max Max in the x axis so all words will show in the plot.
#' @return A ggplot object
#' @importFrom scales label_percent
#' @export
plot_topic_prop <- function(stm_res, n_top = 5, x_max = 0.15) {
  .pkg_check("tidytext")
  td_beta <- tidytext::tidy(stm_res, matrix = "beta")
  td_gamma <- tidytext::tidy(stm_res, matrix = "gamma")
  top_terms <- td_beta %>%
    arrange(beta) %>%
    group_by(topic) %>%
    top_n(5, beta) %>%
    arrange(-beta) %>%
    select(topic, term) %>%
    summarise(terms = list(term)) %>%
    mutate(terms = map(terms, paste, collapse = ", ")) %>%
    unnest(cols = "terms")
  gamma_terms <- td_gamma %>%
    group_by(topic) %>%
    summarize(gamma = mean(gamma)) %>%
    arrange(desc(gamma)) %>%
    left_join(top_terms, by = "topic") %>%
    mutate(topic = reorder(topic, gamma))
  ggplot(gamma_terms, aes(gamma, topic, label = terms)) +
    geom_segment(aes(yend = topic), xend = 0, show.legend = FALSE) +
    geom_point(show.legend = FALSE, color = "blue") +
    geom_text(hjust = 0, nudge_x = 0.001) +
    scale_x_continuous(expand = expansion(c(0, 0.05)),
                       limits = c(0, x_max),
                       breaks = breaks_width(0.02),
                       labels = label_percent(drop0trailing = TRUE)) +
    labs(y = "Topic", x = "Expected topic prevalence") +
    theme(panel.grid.major.y = element_blank())
}
pachterlab/museumst documentation built on July 25, 2022, 11:53 a.m.