ddf_satterthwaite_BM <- function(fit_phylolm, phylo, REML) {
X <- fit_phylolm$X
y <- as.matrix(fit_phylolm$y)
rownames(y) <- names(fit_phylolm$y)
## Likelihood
minusLogLik <- function(pars, y, X, phy, model) {
parameters <- list(sigma2_error = exp(pars[1]))
# parameters <- list(sigma2_error = pars[1])
phytrans <- transf.branch.lengths(phy, model, parameters = parameters)$tree
n <- nrow(X)
d <- ncol(X)
comp <- three.point.compute(phytrans, P = y, Q = X)
invXX <- solve(comp$QQ)
betahat <- invXX %*% comp$QP
sigma2hat <- as.numeric((comp$PP - 2 * t(betahat) %*% comp$QP + t(betahat) %*% comp$QQ %*% betahat) / n)
if (REML) sigma2hat <- sigma2hat * n / (n - d)
if (sigma2hat<0) {
resdl <- X %*% betahat - y
compyy <- three.point.compute(phytrans, P = resdl, Q = X)
sigma2hat <- compyy$PP / n
if (REML) sigma2hat <- sigma2hat * n / (n - d)
}
if (!REML) {
n2llh <- as.numeric( n * log(2 * pi) + n * log(sigma2hat) + n + comp$logd) # -2 log-likelihood
} else {
# log|X'V^{-1}X|
ldXX <- determinant(comp$QQ, logarithm = TRUE)$modulus
n2llh <- as.numeric( (n - d) * log(2 * pi) + (n - d) * log(sigma2hat) + n - d + comp$logd + ldXX) # -2 log-likelihood
}
return(n2llh / 2)
}
optpars <- c(log(fit_phylolm$sigma2_error) - log(fit_phylolm$sigma2))
# optpars <- c(fit_phylolm$sigma2_error / fit_phylolm$sigma2)
# all.equal(minusLogLik(optpars, y, X, phylo, "BM"),
# -fit_phylolm$logLik)
## Hessian
fun <- function(x) {
return(minusLogLik(x, y, X, phylo, "BM"))
}
approxHessian <- nlme::fdHess(pars = optpars, fun = fun, .relStep = .Machine$double.eps^(1/5))
A <- 1 / approxHessian$Hessian[1, 1] / (fit_phylolm$sigma2 / fit_phylolm$sigma2_error)^2
# approxHessian <- pracma::hessian(f = minusLogLik, x0 = fit_phylolm$sigma2_error / fit_phylolm$sigma2,
# y = y, X = X, phy = phylo, model = "BM")
# A <- 1 / approxHessian[1, 1]
## Satterthwaite
n <- length(phylo$tip.label)
d <- 2
K <- vcv(phylo)
Kd <- diag(diag(K))
V <- fit_phylolm$sigma2 * K + fit_phylolm$sigma2_error * Kd
Vinv <- chol2inv(chol(V))
gamma <- fit_phylolm$sigma2_error / fit_phylolm$sigma2
W <- K + gamma * Kd
Winv <- chol2inv(chol(W))
ell <- c(0, 1)
# C <- fit_phylolm$vcov * (n - 2) / n
# Cbis <- solve(t(X) %*% Vinv %*% X)
# all.equal(C, Cbis)
D <- solve(t(X) %*% Winv %*% X)
# all.equal(D, C / fit_phylolm$sigma2)
facmat <- D %*% t(X) %*% Winv
derDgamma <- facmat %*% Kd %*% t(facmat)
derfgamma <- t(ell) %*% derDgamma %*% ell
dfsigerrinv <- derfgamma^2 * A / 2 / (t(ell) %*% D %*% ell)^2 * (1 + 2 / (n - d))
df <- (1 / (n - d) + dfsigerrinv)^{-1}
return(list(df = df, vcov = A))
}
ddf_satterthwaite_sum <- function(fit_phylolm, phylo, REML = FALSE) {
X <- fit_phylolm$X
y <- as.matrix(fit_phylolm$y)
rownames(y) <- names(fit_phylolm$y)
yhat <- as.matrix(fit_phylolm$fitted.values)
rownames(yhat) <- names(fit_phylolm$fitted.values)
n <- length(phylo$tip.label)
d <- ncol(X)
## Likelihood
minusLogLik <- function(pars, y, yhat, X, phy, model) {
n <- nrow(X)
d <- ncol(X)
parameters <- list(sigma2 = exp(pars[1]), sigma2_error = exp(pars[2] - pars[1]))
phytrans <- transf.branch.lengths(phy, model, parameters = parameters)$tree
comp <- three.point.compute(phytrans, P = y - yhat, Q = X)
if (!REML) {
n2llh <- as.numeric( n * log(2 * pi) + n * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2) # -2 log-likelihood
} else {
# log|X'V^{-1}X|
ldXX <- determinant(comp$QQ, logarithm = TRUE)$modulus
n2llh <- as.numeric( (n - d) * log(2 * pi) + (n - d) * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2 + ldXX) # -2 log-likelihood
}
return(n2llh / 2)
}
optpars <- c(log(fit_phylolm$sigma2), log(fit_phylolm$sigma2_error))
# all.equal(minusLogLik(optpars, y, yhat, X, phylo, "BM"),
# -fit_phylolm$logLik)
## Hessian
fun <- function(x) {
return(minusLogLik(x, y, yhat, X, phylo, "BM"))
}
J <- diag(c(1 / fit_phylolm$sigma2, 1 / fit_phylolm$sigma2_error))
A <- compute_hessian(optpars = optpars, fun = fun, grad_trans = J)
# approxHessian <- nlme::fdHess(pars = optpars, fun = fun, .relStep = .Machine$double.eps^(1/5))
# H <- approxHessian$Hessian
# J <- diag(c(1 / fit_phylolm$sigma2, 1 / fit_phylolm$sigma2_error))
# H <- t(J) %*% approxHessian$Hessian %*% J
# A <- solve(H)
# approxHessian <- pracma::hessian(f = minusLogLik, x0 = fit_phylolm$sigma2_error / fit_phylolm$sigma2,
# y = y, X = X, phy = phylo, model = "BM")
# A <- 1 / approxHessian[1, 1]
## Satterthwaite
K <- vcv(phylo)
Kd <- diag(diag(K))
V <- fit_phylolm$sigma2 * K + fit_phylolm$sigma2_error * Kd
Vinv <- chol2inv(chol(V))
ell <- c(0, 1)
C <- fit_phylolm$vcov
if (!REML) C <- C * (n - d) / n
# Cbis <- solve(t(X) %*% Vinv %*% X)
# all.equal(C, Cbis)
facmat <- C %*% t(X) %*% Vinv
derfsigma2 <- t(ell) %*% facmat %*% K %*% t(facmat) %*% ell
derfsigma2_error <- t(ell) %*% facmat %*% Kd %*% t(facmat) %*% ell
derf <- c(derfsigma2, derfsigma2_error)
varestim <- t(derf) %*% A %*% derf
ddf <- 2 * (t(ell) %*% C %*% ell)^2 / varestim
return(list(ddf = ddf, vcov = A))
}
ddf_satterthwaite_lambda <- function(fit_phylolm, phylo, REML = FALSE) {
X <- fit_phylolm$X
y <- as.matrix(fit_phylolm$y)
rownames(y) <- names(fit_phylolm$y)
yhat <- as.matrix(fit_phylolm$fitted.values)
rownames(yhat) <- names(fit_phylolm$fitted.values)
n <- length(phylo$tip.label)
d <- ncol(X)
## Likelihood
minusLogLik <- function(pars, y, yhat, X, phy, model) {
n <- nrow(X)
d <- ncol(X)
parameters <- list(sigma2 = exp(pars[1]), lambda = exp(pars[2]))
phytrans <- transf.branch.lengths(phy, model, parameters = parameters)$tree
comp <- three.point.compute(phytrans, P = y - yhat, Q = X)
if (!REML) {
n2llh <- as.numeric( n * log(2 * pi) + n * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2) # -2 log-likelihood
} else {
# log|X'V^{-1}X|
ldXX <- determinant(comp$QQ, logarithm = TRUE)$modulus
n2llh <- as.numeric( (n - d) * log(2 * pi) + (n - d) * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2 + ldXX) # -2 log-likelihood
}
return(n2llh / 2)
}
optpars <- c(log(fit_phylolm$sigma2), log(fit_phylolm$optpar))
# all.equal(minusLogLik(optpars, y, yhat, X, phylo, "lambda"),
# -fit_phylolm$logLik)
## Hessian
fun <- function(x) {
return(minusLogLik(x, y, yhat, X, phylo, "lambda"))
}
J <- diag(c(1 / fit_phylolm$sigma2, 1 / fit_phylolm$optpar))
A <- compute_hessian(optpars = optpars, fun = fun, grad_trans = J)
# approxHessian <- nlme::fdHess(pars = optpars, fun = fun, .relStep = .Machine$double.eps^(1/3))
# H <- approxHessian$Hessian
# J <- diag(c(1 / fit_phylolm$sigma2, 1 / fit_phylolm$optpar))
# H <- t(J) %*% approxHessian$Hessian %*% J
# A <- solve(H)
## Satterthwaite
K <- vcv(phylo)
Kd <- diag(diag(K))
lambda <- fit_phylolm$optpar
V <- fit_phylolm$sigma2 * (lambda * K + (1 - lambda) * Kd)
Vinv <- chol2inv(chol(V))
ell <- c(0, 1)
C <- fit_phylolm$vcov
if (!REML) C <- C * (n - d) / n
# Cbis <- solve(t(X) %*% Vinv %*% X)
# all.equal(C, Cbis)
facmat <- C %*% t(X) %*% Vinv
derfsigma2 <- t(ell) %*% facmat %*% K %*% t(facmat) %*% ell
derfsigma2_error <- t(ell) %*% facmat %*% Kd %*% t(facmat) %*% ell
derf <- c(derfsigma2, derfsigma2_error)
varestim <- t(derf) %*% A %*% derf
ddf <- 2 * (t(ell) %*% C %*% ell)^2 / varestim
return(list(ddf = ddf, vcov = A))
}
# Adapted from lmerTest
# https://github.com/runehaubo/lmerTestR/blob/35dc5885205d709cdc395b369b08ca2b7273cb78/R/lmer.R#L173
compute_hessian <- function(optpars, fun, grad_trans, tol = 1e-8, ...) {
# Compute Hessian:
h <- numDeriv::hessian(func = fun, x = optpars, ...)
# back transformation of parameters
h <- t(grad_trans) %*% h %*% grad_trans
# Eigen decompose the Hessian:
eig_h <- eigen(h, symmetric=TRUE)
evals <- eig_h$values
neg <- evals < -tol
pos <- evals > tol
zero <- evals > -tol & evals < tol
if(sum(neg) > 0) { # negative eigenvalues
eval_chr <- if(sum(neg) > 1) "eigenvalues" else "eigenvalue"
evals_num <- paste(sprintf("%1.1e", evals[neg]), collapse = " ")
warning(sprintf("Model failed to converge with %d negative %s: %s",
sum(neg), eval_chr, evals_num), call.=FALSE)
}
# Note: we warn about negative AND zero eigenvalues:
if(sum(zero) > 0) { # some eigenvalues are zero
eval_chr <- if(sum(zero) > 1) "eigenvalues" else "eigenvalue"
evals_num <- paste(sprintf("%1.1e", evals[zero]), collapse = " ")
warning(sprintf("Model may not have converged with %d %s close to zero: %s",
sum(zero), eval_chr, evals_num))
}
# Compute vcov(varpar):
pos <- eig_h$values > tol
q <- sum(pos)
# Using the Moore-Penrose generalized inverse for h:
h_inv <- with(eig_h, {
vectors[, pos, drop=FALSE] %*% diag(1/values[pos], nrow=q) %*%
t(vectors[, pos, drop=FALSE]) })
return(h_inv)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.