bind_star_trees <- function(trees_rep) {
bind_text <- "("
tree_text <- sub(";", "", write.tree(trees_rep[1]))
bind_text <- paste0(bind_text, tree_text)
for (tt in trees_rep[-1]) {
tree_text <- sub(";", "", write.tree(tt))
bind_text <- paste0(bind_text, ",", tree_text)
}
bind_text <- paste0(bind_text, ");")
return(read.tree(text = bind_text))
}
ddf_satterthwaite_sum <- function(fit_phylolm, phylo, REML = FALSE) {
X <- fit_phylolm$X
y <- as.matrix(fit_phylolm$y)
rownames(y) <- names(fit_phylolm$y)
yhat <- as.matrix(fit_phylolm$fitted.values)
rownames(yhat) <- names(fit_phylolm$fitted.values)
n <- length(phylo$tip.label)
d <- ncol(X)
# Using the log scale so that parameters are on the entire real line
optpars <- c(fit_phylolm$sigma2, fit_phylolm$sigma2_error)
## Hessian: numerical computation
K <- vcv(phylo)
Kd <- diag(diag(K))
A <- hessianMinusLogLik(optpars, y, yhat, X, K, Kd, REML)
A <- chol2inv(chol(A))
## Gradient of f
V <- fit_phylolm$sigma2 * K + fit_phylolm$sigma2_error * Kd
Vinv <- chol2inv(chol(V))
ell <- c(0, 1)
C <- fit_phylolm$vcov
if (!REML) C <- C * (n - d) / n
# Cbis <- solve(t(X) %*% Vinv %*% X)
# all.equal(C, Cbis)
facmat <- C %*% t(X) %*% Vinv
derfsigma2 <- t(ell) %*% facmat %*% K %*% t(facmat) %*% ell
derfsigma2_error <- t(ell) %*% facmat %*% Kd %*% t(facmat) %*% ell
derf <- c(derfsigma2, derfsigma2_error)
## Variance estimation
varestim <- t(derf) %*% A %*% derf
## Satterthwaite
ddf <- 2 * (t(ell) %*% C %*% ell)^2 / varestim
return(list(ddf = ddf, vcov = A))
}
hessianMinusLogLik <- function(pars, y, yhat, X, K, Kd, REML) {
n <- nrow(X)
d <- ncol(X)
V <- pars[1] * K + pars[2] * Kd
Vinv <- chol2inv(chol(V))
VinvK <- Vinv %*% K
VinvKsq <- VinvK %*% VinvK
VinvKd <- Vinv %*% Kd
VinvKdsq <- VinvKd %*% VinvKd
VinvKVinvKd <- VinvK %*% VinvKd
VinvKVinvKdVinv <- VinvKVinvKd %*% Vinv
dspsp <- - sum(diag(VinvKsq)) + 2 * t(y - yhat) %*% VinvKsq %*% Vinv %*% (y - yhat)
dsese <- - sum(diag(VinvKdsq)) + 2 * t(y - yhat) %*% VinvKdsq %*% Vinv %*% (y - yhat)
dspse <- - sum(diag(VinvKVinvKd)) + t(y - yhat) %*% (VinvKVinvKdVinv + t(VinvKVinvKdVinv)) %*% (y - yhat)
if (REML) {
tXVinv <- t(X) %*% Vinv
tXVinvXinv <- solve(tXVinv %*% X)
tXVinvKVinvX <- tXVinv %*% K %*% t(tXVinv)
tXVinvKdVinvX <- tXVinv %*% Kd %*% t(tXVinv)
dspsp <- dspsp - sum(diag(tXVinvXinv %*% tXVinvKVinvX %*% tXVinvXinv %*% tXVinvKVinvX - 2 * tXVinvXinv %*% tXVinv %*% K %*% VinvK %*% t(tXVinv)))
dsese <- dsese - sum(diag(tXVinvXinv %*% tXVinvKdVinvX %*% tXVinvXinv %*% tXVinvKdVinvX - 2 * tXVinvXinv %*% tXVinv %*% Kd %*% VinvKd %*% t(tXVinv)))
dspse <- dspse - sum(diag(tXVinvXinv %*% tXVinvKdVinvX %*% tXVinvXinv %*% tXVinvKVinvX - tXVinvXinv %*% tXVinv %*% Kd %*% VinvK %*% t(tXVinv) - tXVinvXinv %*% tXVinv %*% K %*% VinvKd %*% t(tXVinv)))
}
return(matrix(c(dspsp, dspse, dspse, dsese), 2, 2) / 2)
}
ddf_satterthwaite_sum_approx <- function(fit_phylolm, phylo, REML = FALSE) {
X <- fit_phylolm$X
y <- as.matrix(fit_phylolm$y)
rownames(y) <- names(fit_phylolm$y)
yhat <- as.matrix(fit_phylolm$fitted.values)
rownames(yhat) <- names(fit_phylolm$fitted.values)
n <- length(phylo$tip.label)
d <- ncol(X)
## Likelihood function
minusLogLik <- function(pars, y, yhat, X, phy, model) {
n <- nrow(X)
d <- ncol(X)
parameters <- list(sigma2 = exp(pars[1]), sigma2_error = exp(pars[2] - pars[1]))
phytrans <- transf.branch.lengths(phy, model, parameters = parameters)$tree
comp <- three.point.compute(phytrans, P = y - yhat, Q = X)
if (!REML) {
n2llh <- as.numeric( n * log(2 * pi) + n * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2) # -2 log-likelihood
} else {
# log|X'V^{-1}X|
ldXX <- determinant(comp$QQ, logarithm = TRUE)$modulus
n2llh <- as.numeric( (n - d) * log(2 * pi) + (n - d) * log(parameters$sigma2) + comp$logd + comp$PP / parameters$sigma2 + ldXX) # -2 log-likelihood
}
return(n2llh / 2)
}
# Using the log scale so that parameters are on the entire real line
optpars <- c(log(fit_phylolm$sigma2), log(fit_phylolm$sigma2_error))
# all.equal(minusLogLik(optpars, y, yhat, X, phylo, "BM"),
# -fit_phylolm$logLik)
## Hessian: numerical computation
fun <- function(x) {
return(minusLogLik(x, y, yhat, X, phylo, "BM"))
}
J <- diag(c(1 / fit_phylolm$sigma2, 1 / fit_phylolm$sigma2_error))
A <- compute_hessian(optpars = optpars, fun = fun, grad_trans = J)
## Gradient of f
K <- vcv(phylo)
Kd <- diag(diag(K))
V <- fit_phylolm$sigma2 * K + fit_phylolm$sigma2_error * Kd
Vinv <- chol2inv(chol(V))
ell <- c(0, 1)
C <- fit_phylolm$vcov
if (!REML) C <- C * (n - d) / n
# Cbis <- solve(t(X) %*% Vinv %*% X)
# all.equal(C, Cbis)
facmat <- C %*% t(X) %*% Vinv
derfsigma2 <- t(ell) %*% facmat %*% K %*% t(facmat) %*% ell
derfsigma2_error <- t(ell) %*% facmat %*% Kd %*% t(facmat) %*% ell
derf <- c(derfsigma2, derfsigma2_error)
## Variance estimation
varestim <- t(derf) %*% A %*% derf
## Satterthwaite
ddf <- 2 * (t(ell) %*% C %*% ell)^2 / varestim
return(list(ddf = ddf, vcov = A))
}
# Adapted from lmerTest
# https://github.com/runehaubo/lmerTestR/blob/35dc5885205d709cdc395b369b08ca2b7273cb78/R/lmer.R#L173
compute_hessian <- function(optpars, fun, grad_trans, tol = 1e-8, ...) {
# Compute Hessian:
h <- numDeriv::hessian(func = fun, x = optpars, ...)
# back transformation of parameters
h <- t(grad_trans) %*% h %*% grad_trans
# Eigen decompose the Hessian:
eig_h <- eigen(h, symmetric=TRUE)
evals <- eig_h$values
neg <- evals < -tol
pos <- evals > tol
zero <- evals > -tol & evals < tol
if(sum(neg) > 0) { # negative eigenvalues
eval_chr <- if(sum(neg) > 1) "eigenvalues" else "eigenvalue"
evals_num <- paste(sprintf("%1.1e", evals[neg]), collapse = " ")
warning(sprintf("Model failed to converge with %d negative %s: %s",
sum(neg), eval_chr, evals_num), call.=FALSE)
}
# Note: we warn about negative AND zero eigenvalues:
if(sum(zero) > 0) { # some eigenvalues are zero
eval_chr <- if(sum(zero) > 1) "eigenvalues" else "eigenvalue"
evals_num <- paste(sprintf("%1.1e", evals[zero]), collapse = " ")
warning(sprintf("Model may not have converged with %d %s close to zero: %s",
sum(zero), eval_chr, evals_num))
}
# Compute vcov(varpar):
pos <- eig_h$values > tol
q <- sum(pos)
# Using the Moore-Penrose generalized inverse for h:
h_inv <- with(eig_h, {
vectors[, pos, drop=FALSE] %*% diag(1/values[pos], nrow=q) %*%
t(vectors[, pos, drop=FALSE]) })
return(h_inv)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.