R/statistic-fgsea.R

Defines functions run_fgsea

Documented in run_fgsea

#' Fast Gene Set Enrichment Analysis (FGSEA)
#'
#' @description
#' Calculates regulatory activities using FGSEA.
#'
#' @details
#'
#' GSEA (Aravind et al., 2005) starts by transforming the input molecular
#' readouts in mat to ranks for each sample. Then, an enrichment score
#' `fgsea` is calculated by walking down the list of features, increasing
#' a running-sum statistic when a feature in the target feature set is
#' encountered and decreasing it when it is not. The final score is the maximum
#' deviation from zero encountered in the random walk. Finally, a normalized
#' score `norm_fgsea`, can be obtained by computing the z-score of the estimate
#' compared to a null distribution obtained from N random permutations. The used
#' implementation is taken from the package `fgsea` (Korotkevich et al., 2021).
#'
#' Aravind S. et al. (2005) Gene set enrichment analysis: A knowledge-based
#' approach for interpreting genome-wide expression profiles. PNAS. 102, 43.
#'
#' Korotkevich G. et al. (2021) Fast gene set enrichment analysis. bioRxiv.
#' DOI: https://doi.org/10.1101/060012.
#'
#' @inheritParams .decoupler_mat_format
#' @inheritParams .decoupler_network_format
#' @param times How many permutations to do?
#' @param nproc Number of cores to use for computation.
#' @param seed A single value, interpreted as an integer, or NULL.
#' @param minsize Integer indicating the minimum number of targets per source.
#' @inheritDotParams fgsea::fgseaMultilevel -pathways -stats -nPermSimple -nproc
#'
#' @return A long format tibble of the enrichment scores for each source
#'  across the samples. Resulting tibble contains the following columns:
#'  1. `statistic`: Indicates which method is associated with which score.
#'  2. `source`: Source nodes of `network`.
#'  3. `condition`: Condition representing each column of `mat`.
#'  4. `score`: Regulatory activity (enrichment score).
#' @family decoupleR statistics
#' @importFrom parallelly availableCores
#' @export
#' @examples
#' inputs_dir <- system.file("testdata", "inputs", package = "decoupleR")
#'
#' mat <- readRDS(file.path(inputs_dir, "mat.rds"))
#' net <- readRDS(file.path(inputs_dir, "net.rds"))
#'
#' run_fgsea(mat, net, minsize=0, nproc=1)
run_fgsea <- function(mat,
                      network,
                      .source = source,
                      .target = target,
                      times = 100,
                      nproc = availableCores(),
                      seed = 42,
                      minsize = 5,
                      ...) {

    # NSE vs. R CMD check workaround
    ES <- NES <- condition <- p_value <- pathway <- pval <- score <- source <-    statistic <- target <- NULL

  # Check for NAs/Infs in mat
  mat <- check_nas_infs(mat)

  network <- network %>%
    rename_net({{ .source }}, {{ .target }})
  network <- filt_minsize(rownames(mat), network, minsize)
  regulons <- extract_sets(network)

  if (is.null(colnames(mat))){
    colnames(mat) <- 1:ncol(mat)
  }

  conditions <- colnames(mat) %>%
    set_names()

  map_dfr(.x = conditions, .f = ~ {
    stats <- mat[, .x]
    options <- list(
      pathways = regulons,
      stats = stats,
      nPermSimple = times,
      nproc = nproc
      )
    withr::with_seed(seed, {
      result <- suppressWarnings(do.call(what = fgsea::fgsea, args = options))
    })
  }, .id = "condition") %>%
    select(pathway, condition, ES, NES, pval) %>%
    tidyr::pivot_longer(cols=c("ES","NES"), names_to ="statistic", values_to="score") %>%
    mutate(statistic=if_else(statistic=='ES', 'fgsea', 'norm_fgsea')) %>%
    rename('source'=pathway, 'p_value'=pval) %>%
    select(statistic, source, condition, score, p_value) %>%
    mutate(score = replace_na(score, Inf)) %>%
    mutate(p_value = replace_na(p_value, 1/times))
}
saezlab/decoupleR documentation built on Oct. 21, 2024, 8:47 a.m.