library(deago)
library(DESeq2)
expected_parameters_list <- list ( 'counts_directory' = "test_counts",
'targets_file' = "test_targets.txt",
'results_directory' = "/path/place/holder",
'gene_ids' = "Geneid",
'alpha' = 0.05,
'control' = NULL,
'columns' = 'condition',
'annotation_file' = 'tests/testthat/deago-test-annotation.tsv',
'keep_images' = 1,
'qc_only' = 0,
'go_analysis' = 1,
'go_level' = 'BP')
parameters_file <- file.path(tempdir(), 'config')
buildConfig(parameters_file, parameters=expected_parameters_list)
expected_parameters <- importConfig(parameters_file)
unlink(parameters_file)
expected_dds <- makeExampleDESeqDataSet(m=18, betaSD=2)
expected_dds$condition <- factor(c(rep(c("AI","AII","AIII"),each=3), rep(c("BI","BII","BIII"),each=3)))
target_df <- data.frame( "condition" = as.character(expected_dds$condition),
"replicate" = rep(c("1", "2", "3"), times=6),
"filename" = paste0(colnames(expected_dds),".tsv"),
stringsAsFactors=FALSE)
targets_file <- tempfile("test_targets", fileext=".txt")
write.table(target_df, file=targets_file, quote=FALSE, row.names=FALSE, sep="\t")
expected_targets <- importTargets(targets_file)
unlink(targets_file)
expected_dds_de <- suppressMessages(DESeq(expected_dds))
colData(expected_dds)$condition <- factor(tolower(colData(expected_dds)$condition))
expected_annotation <- importAnnotation(expected_parameters$annotation_file)
expected_dds_de_ann <- annotateDataset(expected_dds_de, expected_parameters)
expected_gene_list <- getGeneSymbols(expected_dds_de, expected_annotation, 2)
expected_go_list <- getGOlist(expected_annotation, 3)
expected_rc_plot <- plotReadCounts(expected_dds_de, getwd())
expected_nc_plot <- plotNullCounts(expected_dds_de, getwd())
expected_sd_plot <- plotSampleDistances(expected_dds_de, getwd())
expected_pc_list <- getPrincipalComponents(expected_dds_de)
expected_pca_plot <- pcaPlot(expected_pc_list , getwd())
expected_pca_scree_plot <- pcaScreePlot(expected_pc_list , getwd())
expected_pca_table <- pcaSummary(expected_pc_list)
expected_cooks_plot <- plotCooks(expected_dds_de, getwd())
expected_density_plot <- plotDensity(expected_dds_de, getwd())
expected_dispersion_plot <- plotDispersionEstimates(expected_dds_de, getwd())
expected_contrasts <- getContrasts(expected_dds_de, expected_parameters)
expected_contrasts_ann <- getContrasts(expected_dds_de_ann, expected_parameters)
expected_prepared_contrast <- prepareContrast(expected_dds_de_ann, expected_contrasts_ann[["BI_vs_AI"]])
expected_contrast_summary <- contrastSummary(expected_contrasts_ann, list())
expected_contrast_table <- prepareContrastTable(expected_contrasts_ann[["BI_vs_AI"]])
expected_go_tables <- runGOanalysis(expected_dds_de_ann, list("BI_vs_AI"=expected_contrasts_ann[["BI_vs_AI"]]) , expected_parameters)
expected_go_data <- prepareGOdata(expected_dds_de_ann, expected_contrasts_ann[["BI_vs_AI"]], c('BP'))
expected_go_table <- topGOanalysis(expected_go_data)
expected_go_identifiers <- getGOidentifiers(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table)
expected_go_identifiers_up <- getGOidentifiers(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table, 'up')
expected_go_identifiers_down <- getGOidentifiers(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table, 'down')
expected_go_symbols <- getGOsymbols(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table)
expected_go_symbols_up <- getGOsymbols(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table, 'up')
expected_go_symbols_down <- getGOsymbols(expected_contrasts_ann[["BI_vs_AI"]], expected_go_data, expected_go_table, 'down')
expected_go_dt <- prepareGOtable(expected_go_tables[["BI_vs_AI_BP"]])
expected_go_dt_up <- prepareGOtable(expected_go_tables[["BI_vs_AI_BP_up"]])
expected_go_dt_down <- prepareGOtable(expected_go_tables[["BI_vs_AI_BP_down"]])
expected_ma_plot <- plotContrastMA(expected_contrasts$BI_vs_AI, getwd(), geneLabels=TRUE)
expected_volcano_plot <- plotVolcano(expected_contrasts$BI_vs_AI, getwd(), geneLabels=TRUE)
expected_venn_counts <- getVennCounts(expected_contrasts[c(3,12)])
gene_symbols <- paste0("test_", rownames(expected_contrasts[[3]]))
expected_labelled_genes <- labelDEgenes(expected_contrasts[[3]], geneSymbol=gene_symbols, lfc=3, alpha=0.01)
expected_top_genes <- getTopGenes(expected_labelled_genes, 10)
sessInfo <- sessionInfo()
save( expected_parameters,
expected_dds,
target_df,
expected_targets,
expected_dds_de,
expected_annotation,
expected_dds_de_ann,
expected_gene_list,
expected_go_list,
expected_contrasts,
expected_contrasts_ann,
expected_prepared_contrast,
expected_contrast_summary,
expected_contrast_table,
expected_go_tables,
expected_go_data,
expected_go_table,
expected_go_identifiers,
expected_go_identifiers_up,
expected_go_identifiers_down,
expected_go_symbols,
expected_go_symbols_up,
expected_go_symbols_down,
expected_go_dt,
expected_go_dt_up,
expected_go_dt_down,
expected_rc_plot,
expected_nc_plot,
expected_sd_plot,
expected_pc_list,
expected_pca_plot,
expected_pca_scree_plot,
expected_pca_table,
expected_cooks_plot,
expected_density_plot,
expected_dispersion_plot,
expected_ma_plot,
expected_volcano_plot,
expected_venn_counts,
expected_labelled_genes,
expected_top_genes,
sessInfo,
file="tests/testthat/deago-testdata.RData")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.