R/limesurvey.R

Defines functions ls_set_participant_properties ls_invite ls_add_participants ls_get_attrs ls_check_attributes ls_export ls_responses ls_participants ls_surveys ls_call ls_login

Documented in ls_add_participants ls_call ls_check_attributes ls_export ls_get_attrs ls_invite ls_login ls_participants ls_responses ls_set_participant_properties ls_surveys

#' Login to LimeSurvey API
#'
#' Obtains XML-RPC/JSON-RPC session key and stores it in dedicated environment
#' for further use by fellow `ls_` functions.
#'
#' By default,
#' [https://dotazniky.scholaempirica.org/](https://dotazniky.scholaempirica.org/)
#' is used as the LimeSurvey server prividing the API. The credentials used for
#' user authentication are obtained through interactive prompts, mainly for
#' security reasons. The function tries to obtain the credentials from the
#' system environment variable table first. If none found, the user is asked for
#' them and is provided with guidance for permanent credential storage.
#'
#' @param api_url *character*, URL of the API endpoint, default to SCHOLA
#'   EMPIRICA's LimeSurvey API.
#'
#' @return No "explicit" return value, but assigns the session key to a
#'   dedicated environment.
#'
#' @examples
#' \dontrun{
#' ls_login()
#' }
#'
#' @family LimeSurvey functions
#'
#' @importFrom usethis edit_r_environ ui_stop ui_field ui_code ui_done ui_code_block ui_todo
#' @importFrom httr POST content_type_json content
#' @importFrom jsonlite toJSON fromJSON
#' @importFrom httr RETRY content_type_json status_code http_status
#' @importFrom rstudioapi showPrompt askForPassword
#'
#' @export
ls_login <- function(api_url = "https://dotazniky.scholaempirica.org/limesurvey/index.php/admin/remotecontrol") {
  if (!nzchar(Sys.getenv("LS_USER")) || !nzchar(Sys.getenv("LS_PASS"))) {
    user <- showPrompt(
      "LimeSurvey username",
      "It seems you have no LimeSurvey username stored, please enter it here."
    )

    pass <- askForPassword("LimeSurvey password")

    Sys.setenv(LS_USER = user, LS_PASS = pass)

    ui_info("The credentials are saved and available only for this session. To store them safely and permanently...")
    ui_todo("...append following two lines to your {ui_field('.Renviron')} file, a value per line. The file must end with an empty line.")
    ui_code_block(paste0(
      "LS_USER=", user, "\n",
      "LS_PASS=", pass
    ))

    edit_r_environ()
  }

  if (!nzchar(Sys.getenv("LS_URL"))) {
    Sys.setenv(LS_URL = api_url)
  }

  body <- list(
    method = "get_session_key", id = " ",
    params = list(
      admin = Sys.getenv("LS_USER"),
      password = Sys.getenv("LS_PASS")
    )
  )

  r <- RETRY("POST", api_url, content_type_json(), body = toJSON(body, auto_unbox = TRUE))
  if (status_code(r) != 200) {
    stop(http_status(r)$message)
  }

  content <- content(r, encoding = "utf-8")
  if (!is.character(content) && is.null(content$result)) {
    ui_stop("Server is responding but not in a proper way. Please check the API URL and server configuration.")
  }

  res <- fromJSON(content)$result
  if (class(res) == "list" && !is.null(res$status)) {
    ui_stop(res$status)
  }

  assign("sess_key", res, envir = ls_sess_cache)
  assign("sess_key_expiration", Sys.time() + 7200, envir = ls_sess_cache) # default session expiration is 2 hrs = 7200 s


  if (exists("sess_key", envir = ls_sess_cache)) {
    ui_done("Session key sucessfuly obtained and stored in a cache.")
  }
}


# env to store ls key in, must be defined outside any function
ls_sess_cache <- new.env(parent = emptyenv())


#' Call LimeSurvey API Directly
#'
#' General function used internally by every other `ls_` fellow. Useful when you
#' want something special that is not (yet) implemented in `reschola`.
#'
#' [The list of available LimeSurvey API
#' calls](https://api.limesurvey.org/classes/remotecontrol_handle.html) briefly
#' documents the functionality provided. You must strictly adhere to the
#' arguments positions, as they are passed as an array.
#'
#' @param method *character*, a method supported by LimeSurvey API.
#' @param params *list*, arguments of the method. Need to be in order stated in
#'   documentation. **Note that `sSessionKey` auth credentials are already
#'   provided as the first entry of `params` list.**
#'
#' @return A tibble, or raw object if server response cannot be reasonably
#'   coerced to a tibble.
#'
#' @examples
#' \dontrun{
#' ls_call("get_survey_properties", params = list(iSurveyID = 123456))
#' }
#'
#' @importFrom usethis ui_stop ui_field ui_code ui_info ui_value ui_oops
#' @importFrom jsonlite toJSON fromJSON
#' @importFrom tibble as_tibble
#' @importFrom purrr pluck modify_if
#' @importFrom httr RETRY content_type_json status_code http_status
#'
#' @family LimeSurvey functions
#'
#' @export
ls_call <- function(method, params = list()) {
  if (!is.list(params)) {
    ui_stop("{ui_field('params')} must be a list.")
  }

  # in case someone tries to provide this parameter directly
  if ("sSessionKey" %in% names(params)) {
    ui_stop("{ui_field('sSessionKey')} entry is already provided!")
  }

  if (!exists("sess_key_expiration", envir = ls_sess_cache) || ls_sess_cache$sess_key_expiration < Sys.time()) {
    ui_info("Retrieving valid session key...")
    ls_login()
  }

  params <- c(sSessionKey = ls_sess_cache$sess_key, params)
  body <- list(method = method, id = " ", params = params)
  r <- RETRY("POST", Sys.getenv("LS_URL"), content_type_json(),
    body = toJSON(body, auto_unbox = TRUE, null = "null")
    # when something does not work, look carefully whether param is passed as single value or an array of length 1
  )

  parsed <- fromJSON(content(r,
    as = "text",
    encoding = "utf-8"
  ))

  res <- parsed$result

  error_msg <- pluck(parsed, "error")
  status_msg <- pluck(res, "status")

  if (!is.null(error_msg)) {
    ui_info("API returned an error:\n{ui_value(as.character(error_msg))}.")
  }
  if (!is.null(status_msg)) {
    ui_info("API returned message:\n{ui_value(as.character(status_msg))}.")
  }

  # try to make tibble from everything except character and tibble
  # return raw object when conversion fails
  if (!inherits(res, c("tbl_df", "character"))) { # add "list" back if something fails
    tryCatch(
      # replace NULLs with NAs (to be able to turn it into a tibble)
      as_tibble(modify_if(res, is.null, ~NA)),
      error = function(e) {
        return(res)
      }
    )
  } else {
    res
  }
}


#' List All Surveys at the Server
#'
#' Lists every single survey found at the server you are logged in. Useful to
#' gain information about the surveys IDs etc.
#'
#' @return A tibble.
#' @family LimeSurvey functions
#'
#' @examples
#' \dontrun{
#' ls_surveys()
#' }
#'
#' @importFrom dplyr rename
#' @importFrom magrittr %>%
#' @importFrom rlang .data
#'
#' @export
ls_surveys <- function() {
  ls_call("list_surveys") %>%
    rename(survey_id = .data$sid, title = .data$surveyls_title)
}


#' List Participants
#'
#' Fetches participant list of the solicited survey. The function tries to
#' retrieve as many attributes as possible and translate them to their
#' "semantic" version by default. You can also provide character vector of
#' requested attributes, but not in the "semantic" form (use, e.g.,
#' `attribute_1` or `usesleft`).
#'
#' @param survey_id *integer*, ID of the survey (as found, e.g., with
#'   `ls_surveys()`).
#' @param attributes *logical* try to recover all attributes (default to TRUE),
#'   or *character vector* specifying requested attributes.
#' @param n_participants *integer*, the number of participants to list, defualt
#'   to 999.
#' @param only_unused_tokens *logical*, should only the unused tokens be listed?
#'   Default to FALSE.
#' @param translate_attrs *logical*, should the custom attributes be
#'   "translated" to "semantic" version? Default to TRUE.
#'
#' @return A tibble, or raw object if server response cannot be reasonably
#'   coerced to a tibble.
#'
#' @examples
#' \dontrun{
#' ls_participants(123456, attributes = c("usesleft"))
#' }
#'
#' @importFrom tidyr unpack
#' @importFrom dplyr rename
#' @importFrom rlang !!! set_names
#' @importFrom purrr pluck map_chr
#' @importFrom usethis ui_stop ui_value
#'
#' @family LimeSurvey functions
#' @export
ls_participants <- function(survey_id, attributes = TRUE, n_participants = 999,
                            only_unused_tokens = FALSE, translate_attrs = TRUE) {
  if (is.logical(attributes)) {
    if (attributes) {
      attributes <- .ls_all_attributes
    }
  } else {
    ls_check_attributes(attributes)
  }

  res <- ls_call("list_participants", params = list(
    iSurveyID = survey_id,
    iStart = 0,
    iLimit = n_participants,
    bUnused = only_unused_tokens,
    aAttributes = as.list(attributes)
  ))

  res <- unpack(res, "participant_info")

  if (translate_attrs && length(attributes) != 0) {
    attrs <- ls_get_attrs(survey_id = survey_id)
    if (!is.null(attrs) && length(attrs) != 0) {
      attrs <- set_names(names(attrs), attrs) # swap names-values
      attrs <- attrs[attrs %in% names(res)] # keep only those present in res
      res <- res %>% rename(!!!attrs)
    }
  }

  res
}


#' Export Responses
#'
#' Fetches responses and applies so-called "R-syntax" transformation script from
#' LimeSurvey pertaining factor levels and items labels (those are readily
#' available in RStudio data frame preview and can be extracted using
#' `attr(.data, "label")`). By default, the function attempts to "clean" the
#' labels (`clean_labels` argument), keeping only the content inside `[...]`, if
#' there are any.
#'
#' @param survey_id *integer*, ID of the survey (as found with `ls_surveys`,
#'   e.g.).
#' @param clean_labels *logical*, whether to clean labels of subquestions from
#'   repeating parts. Defaults to `TRUE`.
#' @param lang *character*, ISO 639 language code, default to `cs`.
#' @param part *character*, completion status, either `complete`, `incomplete`
#'   or `all` (the default).
#' @param ... *other named arguments* used by "export_responses" method. Use at
#'   your own risk.
#'
#' @return  A tibble, or raw object if server response cannot be reasonably
#'   coerced to a tibble.
#' @examples
#' \dontrun{
#' ls_responses(123456)
#' }
#'
#' @importFrom jsonlite base64_dec
#' @importFrom utils read.csv2
#' @importFrom tibble as_tibble
#' @importFrom purrr modify2
#' @importFrom stringr str_replace
#' @family LimeSurvey functions
#'
#' @export
ls_responses <- function(survey_id, clean_labels = TRUE, lang = "cs", part = "all", ...) {
  part <- match.arg(part, c("complete", "incomplete", "all"))

  data <- ls_call("export_responses",
    params = list(
      iSurveyID = survey_id,
      sDocumentType = "rdata",
      sLanguageCode = lang,
      sCompletionStatus = part,
      ...
    )
  )

  data <- rawToChar(base64_dec(data))

  data <- read.csv2(textConnection(data),
    encoding = "UTF-8"
  )

  syntax <- ls_call("export_responses",
    params = list(
      iSurveyID = survey_id,
      sDocumentType = "rsyntax",
      sLanguageCode = lang,
      sCompletionStatus = part,
      ...
    )
  )

  syntax <- readLines(
    textConnection(
      rawToChar(base64_dec(syntax)),
      encoding = "UTF-8"
    ),
    encoding = "UTF-8"
  )[-1] # exclude first line (data already read)

  # suppres those "NAs introduced by coercion"
  # warnings of no value (but disturbing)
  suppressWarnings(
    source(textConnection(syntax), encoding = "UTF-8", local = TRUE)
  )

  # repair names (possibly duplicated)
  out <- as_tibble(data, .name_repair = ~ make.unique(.x, "_"))

  # extract variable labels
  labels <- attr(out, "variable.labels", exact = TRUE)

  # clean the labels, keeping only the content inside [ ], if there is one
  labels <- if (clean_labels) {
    str_replace(labels, ".*?\\[(.*?)\\].*", "\\1")
  } else {
    labels
  }

  # get the tibble variable.labels attribute and break it to individual items
  out <- modify2(
    out, labels,
    ~ `attr<-`(.x, "label", .y)
  )

  # remove the tibble attribute, which is not needed anymore
  attr(out, "variable.labels") <- NULL

  out
}


#' Export Responses with Participants Attached
#'
#' @inheritParams ls_responses
#' @inheritParams ls_participants
#' @param join_by *character*, the joining variable present in both responses
#'   and participants tibbles. Default to `token`. Pass `NULL` to join by common
#'   variables.
#' @inheritDotParams dplyr::left_join -x -y -by
#'
#' @return A tibble.
#' @examples
#' \dontrun{
#' ls_export(123456)
#' }
#'
#' @importFrom dplyr left_join
#' @importFrom usethis ui_stop ui_code
#'
#' @family LimeSurvey functions
#' @export
ls_export <- function(survey_id, attributes = TRUE, clean_labels = TRUE, n_participants = 999,
                      lang = "cs", part = "all", only_unused_tokens = FALSE,
                      join_by = "token", ...) {
  participants <- ls_participants(survey_id,
    n_participants = n_participants,
    only_unused_tokens = only_unused_tokens, attributes = attributes
  )

  responses <- ls_responses(survey_id, clean_labels = clean_labels, lang = lang, part = part)

  left_join(participants, responses, by = join_by, ...)
}


# define possible LS attributes --- may need updates
.ls_all_attributes <- c(
  "id",
  "tid",
  "token",
  "completed",
  "participant_id",
  "language",
  "usesleft",
  "firstname",
  "lastname",
  "email",
  "blacklisted",
  "validfrom",
  "sent",
  "validuntil",
  "remindersent",
  "emailstatus",
  "remindercount",
  paste0("attribute_", 1:100)
)


#' Check for Illegal Attributes
#'
#' Checks for illegal LS attributes and raises an error when any found.
#'
#' @param attributes vector of attributes
#'
ls_check_attributes <- function(attributes) {
  illegal_attr <- !attributes %in% .ls_all_attributes
  if (any(illegal_attr)) {
    ui_stop(c(
      "Following attributes are not supported: {ui_value(attributes[illegal_attr])}.",
      "For custom attributes, use {ui_value('attribute_1 ... attribute_n')}.",
      "\"Semantic\" names are not supported at the input side."
    ))
  }
}


#' Get Survey Attributes in Semantic Form
#'
#' A survey can comprise one or more custom attributes useful for encoding
#' participant characteristics directly within participants table. However,
#' LimeSurvey refers to them as `attribute_x` (where `x` is the attribute
#' position) which is not useful at all. The function aims to resolve this issue
#' by returning so-called "semantic" form of attributes with human-readable
#' description.
#'
#' @param survey_id *integer*, ID of the survey (as found, e.g., with
#'   `ls_surveys()`).
#'
#' @return A character vector of "semantic" attributes with names denoting "raw"
#'   attributes used internally by LimeSurvey.
#'
#' @family LimeSurvey functions
#'
#' @examples
#' \dontrun{
#' ls_get_attrs(123456)
#' }
#'
#' @importFrom jsonlite fromJSON
#' @importFrom rlang set_names
#' @importFrom dplyr rename
#' @importFrom usethis ui_info
#' @importFrom purrr pluck map_chr
#'
#' @export
ls_get_attrs <- function(survey_id) {
  attrs <- ls_call("get_survey_properties", params = list(iSurveyID = survey_id)) %>%
    pluck("attributedescriptions")

  if (is.null(attrs) || is.na(attrs)) {
    ui_info("No attributes were found. Ignoring {ui_code(\"attributes = TRUE\")}.")
    return(NULL)
  }

  attrs %>%
    fromJSON() %>%
    map_chr("description")
}


#' Add Participant(s) to the Survey
#'
#' The function takes a `tibble` (or any object that is internally represented
#' as a (named) `list` by `R`) of participant(s) data and adds them to the
#' LimeSurvey participant database of the selected survey.
#'
#' Generally, your `part_data` object have to contain three variables:
#' `firstname`, `lastname`, and `email`. That is something like a bare minimum,
#' but you may add any attribute recognized by LimeSurvey -- even custom
#' attributes like `attribute_1` or so. For the human-readable list of custom
#' attributes being held in the LimeSurvey participant database of the selected
#' survey, use `ls_get_attrs()`. However, do not use the "semantic" form, as
#' `ls_add_participants()` recognizes only raw, i.e. `attribute_1` notation.
#'
#' @param survey_id *integer*, ID of the survey (as found with `ls_surveys`,
#'   e.g.).
#' @param part_data *tibble / data.frame / list*, object with participant(s)
#'   data, i.e., `firstname`, `lastname`, `email` etc.
#' @param create_token *logical*, whether to create token outright. Defaults to
#'   `TRUE`).
#'
#' @return Called for a side effect, but returns the inserted data including
#'   additional new information like the token string.
#'
#' @family LimeSurvey functions
#'
#' @examples
#' \dontrun{
#' # create participant table
#' part_data <- tibble(
#'   firstname = "John",
#'   lastname = "Doe",
#'   email = "john@example.com",
#'   language = "cs",
#'   attribute_1 = "Example School"
#' )
#'
#' # insert participant into the LimeSurvey database
#' ls_add_participants(123456, part_data)
#'
#' # check if OK
#' ls_participants(123456)
#' }
#'
#' @export
ls_add_participants <- function(survey_id, part_data, create_token = TRUE) {
  ls_call("add_participants",
    params = list(
      iSurveyID = survey_id,
      aParticipantData = part_data,
      bCreateToken = create_token
    )
  )
}


#' Invite Participant(s)
#'
#' Send an email with a link to a survey to the particular participant(s). Uses
#' email template specified in the LimeSurvey web interface. Please read the
#' section *"On errors and messages from the API server"* of this documentation
#' page before use.
#'
#' LimeSurvey allows you to send so-called invitation to a participant, meaning
#' he or she will get an email containing a link with his or her unique access
#' token. If you wish to send the invitation even if it has been already sent,
#' use `uninvited_only = FALSE`.
#'
#' @section On errors and messages from the API server: Note that the function
#'   passes on any messages from the LimeSurvey API server. As usual with
#'   LimeSurvey, many things are erroneous, buggy or does not make sense. In
#'   this case, a sign of a successful invitation is something like *"-1 left to
#'   send"* (where *"-1"* denotes the number of invitations sent).
#'
#'   Another message you may see is *"Error: No candidate tokens"*, which
#'   possibly means that the `tid`s you use are not present in the survey of
#'   concern. However, it can also indicate that the invitation has been already
#'   sent to the `tid`s and you have to use `uninvited_only = FALSE` to proceed.
#'
#'   **Note that when you add an email entry that has not a proper email format,
#'   no participants are added and tibble with `errors$email` list-column is
#'   returned.**
#'
#' @param survey_id *integer*, ID of the survey (as found with `ls_surveys()`,
#'   e.g.).
#' @param tid *integer(s)*, one ore more token IDs (**not tokens!**) from
#'   participant database to invite. Use `ls_participants()` to get the `tid`s.
#' @param uninvited_only *logical*, if `TRUE`, send invitation for participants
#'   that have not been invited yet (default). If `FALSE`, send an invite even
#'   if already sent.
#'
#' @return Called for a side effect. Returns a message from the server.
#'
#' @family LimeSurvey functions
#'
#' @examples
#' \dontrun{
#' ls_invite(123456, 18)
#' }
#'
#' @export
ls_invite <- function(survey_id, tid, uninvited_only = TRUE) {

  # assert integer
  if (!is.numeric(tid)) ui_stop("Token ID must be an integer!")

  ls_call("invite_participants",
    params = list(
      iSurveyID = survey_id,
      aTokenIds = I(tid), # prevent jsonlite from unboxing, as LS expects an array, not a value!!
      bEmail = uninvited_only
    )
  )
}


#' Set or Edit Attribute(s) of an Participant
#'
#' @param survey_id  *integer*, ID of the survey (as found with `ls_surveys()`,
#'   e.g.).
#' @param participant *integer* or *list*, **one** token ID (**not token!**) from
#'   participant database. Use `ls_participants()` to get the `tid`. Another
#'   option is to pass a list of one ore more participant properties, i.e.
#'   `list(lastname = "Doe")`
#' @param ... attributes in the form `attribute_name = attribute_value`.
#'
#' @return A tibble with the participant row just edited.
#'
#' @family LimeSurvey functions
#'
#' @examples
#' \dontrun{
#' ls_set_participant_properties(123456,
#'   participant = 18, email = "new@email.cz",
#'   attribute_1 = 600123456
#' )
#' }
#'
#' @export
ls_set_participant_properties <- function(survey_id, participant, ...) {
  attributes <- list(...)
  if (!is.list(participant) && length(participant) > 1) {
    ui_stop("You can edit only one participand at the time.")
  }

  # aTokenQueryProperties can be an array of participant properties,
  # i.e. lastname = "NAME", or TID, as an integer
  # make tid an unboxed list for the API to recognize it as an array
  if (is.list(participant)) {
    tid <- I(participant)
  }

  ls_check_attributes(names(attributes))

  ls_call("set_participant_properties",
    params = list(
      iSurveyID = survey_id,
      aTokenQueryProperties = participant,
      aTokenData = attributes
    )
  )
}


# ls_get_participant_properties <- function(survey_id, tid) {
#
# }


# proposals

# add participants to central database
# particips <- tibble(firstname = "Jan", lastname = "Nalallalaalalaetlkkík", email = "neasdftikja@sdgmail.com")
# ls_call("cpd_importParticipants", params = list(participants = particips, update = T))


# set participant properties
#
# map2(particip_data$tid, particip_data$attribute_1,
#      ~ ls_call("set_participant_properties", list(258724, .x, list(attribute_1 = .y)))
# )
# # .x is token ID (tid)
scholaempirica/reschola documentation built on May 14, 2022, 8:38 a.m.