GSEAx <- function(dataset, ref=NULL, gsets, reshuffling.type = "sample.labels",
nperm = 1000, weighted.score.type = 1, nom.p.val.threshold = -1, fwer.p.val.threshold = -1, fdr.q.val.threshold = 0.25, topgs = 10, adjust.FDR.q.val = F, reverse.sign = F, preproc.type = 0, random.seed = NULL, perm.type = 0, fraction = 1.0, replace = F, gs.size.threshold.min = 5, gs.size.threshold.max = 500 ,use.fast.enrichment.routine = T, verbose=FALSE) {
if (.Platform$OS.type == "windows") {
memory.limit(6000000000)
memory.limit()
# print(c("Start memory size=", memory.size()))
}
# Read input data matrix
if(!is.null(random.seed)){
set.seed(seed=random.seed, kind = NULL)
}
adjust.param <- 0.5
gc()
time1 <- proc.time()
gene.labels <- row.names(dataset)
gene.ann=""
gs.ann =""
if(class(dataset)=="data.frame"){sample.names <- names(dataset)}
else{sample.names= colnames(dataset)}
A <- data.matrix(dataset)
dim(A)
cols <- length(A[1,])
rows <- length(A[,1])
# Read input class vector
CLS <- ref
if(class(CLS)!="list"){
if(length(CLS)==ncol(dataset)){
tmp1 <- names(table(CLS))
tmp2 <- rep(0, ncol(dataset))
tmp2[which(CLS==tmp1[1])] <- 1
tmp2[which(CLS==tmp1[2])] <- 0
CLS <- list(phen=tmp1, class.v=tmp2)
}
}
class.labels <- CLS$class.v
class.phen <- CLS$phen
if (reverse.sign == T) {
phen1 <- class.phen[2]
phen2 <- class.phen[1]
} else {
phen1 <- class.phen[1]
phen2 <- class.phen[2]
}
# sort samples according to phenotype
col.index <- order(class.labels, decreasing=F)
class.labels <- class.labels[col.index]
sample.names <- sample.names[col.index]
for (j in 1:rows) {
A[j, ] <- A[j, col.index]
}
names(A) <- sample.names
temp <- gsets
max.Ng <- length(temp)
temp.size.G <- vector(length = max.Ng, mode = "numeric")
for (i in 1:max.Ng) {
temp.size.G[i] <- length(temp[[i]])
}
max.size.G <- max(temp.size.G)
gs <- matrix(rep("null", max.Ng*max.size.G), nrow=max.Ng, ncol= max.size.G)
temp.names <- vector(length = max.Ng, mode = "character")
temp.desc <- vector(length = max.Ng, mode = "character")
gs.count <- 1
for (i in 1:max.Ng) {
gene.set.size <- length(temp[[i]])
gs.line <- noquote(temp[[i]])
gene.set.name <- names(temp)[i]
gene.set.desc <- noquote(" ")
gene.set.tags <- gs.line
existing.set <- is.element(gene.set.tags, gene.labels)
set.size <- length(existing.set[existing.set == T])
if ((set.size < gs.size.threshold.min) || (set.size > gs.size.threshold.max)) next
temp.size.G[gs.count] <- set.size
gs[gs.count,] <- c(gene.set.tags[existing.set], rep("null", max.size.G - temp.size.G[gs.count]))
temp.names[gs.count] <- gene.set.name
temp.desc[gs.count] <- gene.set.desc
gs.count <- gs.count + 1
}
Ng <- gs.count - 1
gs.names <- vector(length = Ng, mode = "character")
gs.desc <- vector(length = Ng, mode = "character")
size.G <- vector(length = Ng, mode = "numeric")
gs.names <- temp.names[1:Ng]
gs.desc <- temp.desc[1:Ng]
size.G <- temp.size.G[1:Ng]
N <- length(A[,1])
Ns <- length(A[1,])
all.gene.descs <- gene.labels
all.gene.symbols <- gene.labels
all.gs.descs <- gs.desc
if(verbose){
print(c("Number of genes:", N))
print(c("Number of Gene Sets:", Ng))
print(c("Number of samples:", Ns))
print(c("Original number of Gene Sets:", max.Ng))
print(c("Maximum gene set size:", max.size.G))
}
# Read gene and gene set annotations if gene annotation file was provided
all.gene.descs <- vector(length = N, mode ="character")
all.gene.symbols <- vector(length = N, mode ="character")
all.gs.descs <- vector(length = Ng, mode ="character")
if (is.data.frame(gene.ann)) {
temp <- gene.ann
a.size <- length(temp[,1])
print(c("Number of gene annotation file entries:", a.size))
accs <- as.character(temp[,1])
locs <- match(gene.labels, accs)
all.gene.descs <- as.character(temp[locs, "Gene.Title"])
all.gene.symbols <- as.character(temp[locs, "Gene.Symbol"])
rm(temp)
} else if (gene.ann == "") {
for (i in 1:N) {
all.gene.descs[i] <- gene.labels[i]
all.gene.symbols[i] <- gene.labels[i]
}
} else {
temp <- read.delim(gene.ann, header=T, sep=",", comment.char="", as.is=T)
a.size <- length(temp[,1])
print(c("Number of gene annotation file entries:", a.size))
accs <- as.character(temp[,1])
locs <- match(gene.labels, accs)
all.gene.descs <- as.character(temp[locs, "Gene.Title"])
all.gene.symbols <- as.character(temp[locs, "Gene.Symbol"])
rm(temp)
}
if (is.data.frame(gs.ann)) {
temp <- gs.ann
a.size <- length(temp[,1])
print(c("Number of gene set annotation file entries:", a.size))
accs <- as.character(temp[,1])
locs <- match(gs.names, accs)
all.gs.descs <- as.character(temp[locs, "SOURCE"])
rm(temp)
} else if (gs.ann == "") {
for (i in 1:Ng) {
all.gs.descs[i] <- gs.desc[i]
}
} else {
temp <- read.delim(gs.ann, header=T, sep="\t", comment.char="", as.is=T)
a.size <- length(temp[,1])
print(c("Number of gene set annotation file entries:", a.size))
accs <- as.character(temp[,1])
locs <- match(gs.names, accs)
all.gs.descs <- as.character(temp[locs, "SOURCE"])
rm(temp)
}
Obs.indicator <- matrix(nrow= Ng, ncol=N)
Obs.RES <- matrix(nrow= Ng, ncol=N)
Obs.ES <- vector(length = Ng, mode = "numeric")
Obs.arg.ES <- vector(length = Ng, mode = "numeric")
Obs.ES.norm <- vector(length = Ng, mode = "numeric")
time2 <- proc.time()
# GSEA methodology
# Compute observed and random permutation gene rankings
obs.s2n <- vector(length=N, mode="numeric")
signal.strength <- vector(length=Ng, mode="numeric")
tag.frac <- vector(length=Ng, mode="numeric")
gene.frac <- vector(length=Ng, mode="numeric")
coherence.ratio <- vector(length=Ng, mode="numeric")
obs.phi.norm <- matrix(nrow = Ng, ncol = nperm)
correl.matrix <- matrix(nrow = N, ncol = nperm)
obs.correl.matrix <- matrix(nrow = N, ncol = nperm)
order.matrix <- matrix(nrow = N, ncol = nperm)
obs.order.matrix <- matrix(nrow = N, ncol = nperm)
nperm.per.call <- 100
n.groups <- nperm %/% nperm.per.call
n.rem <- nperm %% nperm.per.call
n.perms <- c(rep(nperm.per.call, n.groups), n.rem)
n.ends <- cumsum(n.perms)
n.starts <- n.ends - n.perms + 1
if (n.rem == 0) {
n.tot <- n.groups
} else {
n.tot <- n.groups + 1
}
for (nk in 1:n.tot) {
call.nperm <- n.perms[nk]
if(verbose){
print(paste("Computing ranked list for actual and permuted phenotypes.......permutations: ", n.starts[nk], "--", n.ends[nk], sep=" "))
}
O <- GSEA.GeneRanking(A, class.labels, gene.labels, call.nperm, permutation.type = perm.type, sigma.correction = "GeneCluster", fraction=fraction, replace=replace, reverse.sign = reverse.sign)
gc()
order.matrix[,n.starts[nk]:n.ends[nk]] <- O$order.matrix
obs.order.matrix[,n.starts[nk]:n.ends[nk]] <- O$obs.order.matrix
correl.matrix[,n.starts[nk]:n.ends[nk]] <- O$s2n.matrix
obs.correl.matrix[,n.starts[nk]:n.ends[nk]] <- O$obs.s2n.matrix
rm(O)
}
obs.s2n <- apply(obs.correl.matrix, 1, median) # using median to assign enrichment scores
obs.index <- order(obs.s2n, decreasing=T)
obs.s2n <- sort(obs.s2n, decreasing=T)
obs.gene.labels <- gene.labels[obs.index]
obs.gene.descs <- all.gene.descs[obs.index]
obs.gene.symbols <- all.gene.symbols[obs.index]
for (r in 1:nperm) {
correl.matrix[, r] <- correl.matrix[order.matrix[,r], r]
}
for (r in 1:nperm) {
obs.correl.matrix[, r] <- obs.correl.matrix[obs.order.matrix[,r], r]
}
gene.list2 <- obs.index
for (i in 1:Ng) {
if(verbose){
print(paste("Computing observed enrichment for gene set:", i, gs.names[i], sep=" "))
}
gene.set <- gs[i,gs[i,] != "null"]
gene.set2 <- vector(length=length(gene.set), mode = "numeric")
gene.set2 <- match(gene.set, gene.labels)
GSEA.results <- GSEA.EnrichmentScore(gene.list=gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector = obs.s2n)
Obs.ES[i] <- GSEA.results$ES
Obs.arg.ES[i] <- GSEA.results$arg.ES
Obs.RES[i,] <- GSEA.results$RES
Obs.indicator[i,] <- GSEA.results$indicator
if (Obs.ES[i] >= 0) { # compute signal strength
tag.frac[i] <- sum(Obs.indicator[i,1:Obs.arg.ES[i]])/size.G[i]
gene.frac[i] <- Obs.arg.ES[i]/N
} else {
tag.frac[i] <- sum(Obs.indicator[i, Obs.arg.ES[i]:N])/size.G[i]
gene.frac[i] <- (N - Obs.arg.ES[i] + 1)/N
}
signal.strength[i] <- tag.frac[i] * (1 - gene.frac[i]) * (N / (N - size.G[i]))
}
# Compute enrichment for random permutations
phi <- matrix(nrow = Ng, ncol = nperm)
phi.norm <- matrix(nrow = Ng, ncol = nperm)
obs.phi <- matrix(nrow = Ng, ncol = nperm)
if (reshuffling.type == "sample.labels") { # reshuffling phenotype labels
for (i in 1:Ng) {
if(verbose){
print(paste("Computing random permutations' enrichment for gene set:", i, gs.names[i], sep=" "))
}
gene.set <- gs[i,gs[i,] != "null"]
gene.set2 <- vector(length=length(gene.set), mode = "numeric")
gene.set2 <- match(gene.set, gene.labels)
for (r in 1:nperm) {
gene.list2 <- order.matrix[,r]
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=correl.matrix[, r])
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=correl.matrix[, r])
}
phi[i, r] <- GSEA.results$ES
}
if (fraction < 1.0) { # if resampling then compute ES for all observed rankings
for (r in 1:nperm) {
obs.gene.list2 <- obs.order.matrix[,r]
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
}
obs.phi[i, r] <- GSEA.results$ES
}
} else { # if no resampling then compute only one column (and fill the others with the same value)
obs.gene.list2 <- obs.order.matrix[,1]
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
}
obs.phi[i, 1] <- GSEA.results$ES
for (r in 2:nperm) {
obs.phi[i, r] <- obs.phi[i, 1]
}
}
gc()
}
} else if (reshuffling.type == "gene.labels") { # reshuffling gene labels
for (i in 1:Ng) {
gene.set <- gs[i,gs[i,] != "null"]
gene.set2 <- vector(length=length(gene.set), mode = "numeric")
gene.set2 <- match(gene.set, gene.labels)
for (r in 1:nperm) {
reshuffled.gene.labels <- sample(1:rows)
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=reshuffled.gene.labels, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.s2n)
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=reshuffled.gene.labels, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.s2n)
}
phi[i, r] <- GSEA.results$ES
}
if (fraction < 1.0) { # if resampling then compute ES for all observed rankings
for (r in 1:nperm) {
obs.gene.list2 <- obs.order.matrix[,r]
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
}
obs.phi[i, r] <- GSEA.results$ES
}
} else { # if no resampling then compute only one column (and fill the others with the same value)
obs.gene.list2 <- obs.order.matrix[,1]
if (use.fast.enrichment.routine == F) {
GSEA.results <- GSEA.EnrichmentScore(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
} else {
GSEA.results <- GSEA.EnrichmentScore2(gene.list=obs.gene.list2, gene.set=gene.set2, weighted.score.type=weighted.score.type, correl.vector=obs.correl.matrix[, r])
}
obs.phi[i, 1] <- GSEA.results$ES
for (r in 2:nperm) {
obs.phi[i, r] <- obs.phi[i, 1]
}
}
gc()
}
}
# Compute 3 types of p-values
# Find nominal p-values
if(verbose){
print("Computing nominal p-values...")
}
p.vals <- matrix(0, nrow = Ng, ncol = 2)
for (i in 1:Ng) {
pos.phi <- NULL
neg.phi <- NULL
for (j in 1:nperm) {
if (phi[i, j] >= 0) {
pos.phi <- c(pos.phi, phi[i, j])
} else {
neg.phi <- c(neg.phi, phi[i, j])
}
}
ES.value <- Obs.ES[i]
if (ES.value >= 0) {
p.vals[i, 1] <- signif(sum(pos.phi >= ES.value)/length(pos.phi), digits=5)
} else {
p.vals[i, 1] <- signif(sum(neg.phi <= ES.value)/length(neg.phi), digits=5)
}
}
# Find effective size
erf <- function (x)
{
2 * pnorm(sqrt(2) * x)
}
KS.mean <- function(N) { # KS mean as a function of set size N
S <- 0
for (k in -100:100) {
if (k == 0) next
S <- S + 4 * (-1)**(k + 1) * (0.25 * exp(-2 * k * k * N) - sqrt(2 * pi) * erf(sqrt(2 * N) * k)/(16 * k * sqrt(N)))
}
return(abs(S))
}
# KS.mean.table <- vector(length=5000, mode="numeric")
# for (i in 1:5000) {
# KS.mean.table[i] <- KS.mean(i)
# }
# KS.size <- vector(length=Ng, mode="numeric")
# Rescaling normalization for each gene set null
if(verbose){
print("Computing rescaling normalization for each gene set null...")
}
for (i in 1:Ng) {
pos.phi <- NULL
neg.phi <- NULL
for (j in 1:nperm) {
if (phi[i, j] >= 0) {
pos.phi <- c(pos.phi, phi[i, j])
} else {
neg.phi <- c(neg.phi, phi[i, j])
}
}
pos.m <- mean(pos.phi)
neg.m <- mean(abs(neg.phi))
# if (Obs.ES[i] >= 0) {
# KS.size[i] <- which.min(abs(KS.mean.table - pos.m))
# } else {
# KS.size[i] <- which.min(abs(KS.mean.table - neg.m))
# }
pos.phi <- pos.phi/pos.m
neg.phi <- neg.phi/neg.m
for (j in 1:nperm) {
if (phi[i, j] >= 0) {
phi.norm[i, j] <- phi[i, j]/pos.m
} else {
phi.norm[i, j] <- phi[i, j]/neg.m
}
}
for (j in 1:nperm) {
if (obs.phi[i, j] >= 0) {
obs.phi.norm[i, j] <- obs.phi[i, j]/pos.m
} else {
obs.phi.norm[i, j] <- obs.phi[i, j]/neg.m
}
}
if (Obs.ES[i] >= 0) {
Obs.ES.norm[i] <- Obs.ES[i]/pos.m
} else {
Obs.ES.norm[i] <- Obs.ES[i]/neg.m
}
}
# Compute FWER p-vals
if(verbose){
print("Computing FWER p-values...")
}
max.ES.vals.p <- NULL
max.ES.vals.n <- NULL
for (j in 1:nperm) {
pos.phi <- NULL
neg.phi <- NULL
for (i in 1:Ng) {
if (phi.norm[i, j] >= 0) {
pos.phi <- c(pos.phi, phi.norm[i, j])
} else {
neg.phi <- c(neg.phi, phi.norm[i, j])
}
}
if (length(pos.phi) > 0) {
max.ES.vals.p <- c(max.ES.vals.p, max(pos.phi))
}
if (length(neg.phi) > 0) {
max.ES.vals.n <- c(max.ES.vals.n, min(neg.phi))
}
}
for (i in 1:Ng) {
ES.value <- Obs.ES.norm[i]
if (Obs.ES.norm[i] >= 0) {
p.vals[i, 2] <- signif(sum(max.ES.vals.p >= ES.value)/length(max.ES.vals.p), digits=5)
} else {
p.vals[i, 2] <- signif(sum(max.ES.vals.n <= ES.value)/length(max.ES.vals.n), digits=5)
}
}
# Compute FDRs
if(verbose){
print("Computing FDR q-values...")
}
NES <- vector(length=Ng, mode="numeric")
phi.norm.mean <- vector(length=Ng, mode="numeric")
obs.phi.norm.mean <- vector(length=Ng, mode="numeric")
phi.norm.median <- vector(length=Ng, mode="numeric")
obs.phi.norm.median <- vector(length=Ng, mode="numeric")
phi.norm.mean <- vector(length=Ng, mode="numeric")
obs.phi.mean <- vector(length=Ng, mode="numeric")
FDR.mean <- vector(length=Ng, mode="numeric")
FDR.median <- vector(length=Ng, mode="numeric")
phi.norm.median.d <- vector(length=Ng, mode="numeric")
obs.phi.norm.median.d <- vector(length=Ng, mode="numeric")
Obs.ES.index <- order(Obs.ES.norm, decreasing=T)
Orig.index <- seq(1, Ng)
Orig.index <- Orig.index[Obs.ES.index]
Orig.index <- order(Orig.index, decreasing=F)
Obs.ES.norm.sorted <- Obs.ES.norm[Obs.ES.index]
gs.names.sorted <- gs.names[Obs.ES.index]
for (k in 1:Ng) {
NES[k] <- Obs.ES.norm.sorted[k]
ES.value <- NES[k]
count.col <- vector(length=nperm, mode="numeric")
obs.count.col <- vector(length=nperm, mode="numeric")
for (i in 1:nperm) {
phi.vec <- phi.norm[,i]
obs.phi.vec <- obs.phi.norm[,i]
if (ES.value >= 0) {
count.col.norm <- sum(phi.vec >= 0)
obs.count.col.norm <- sum(obs.phi.vec >= 0)
count.col[i] <- ifelse(count.col.norm > 0, sum(phi.vec >= ES.value)/count.col.norm, 0)
obs.count.col[i] <- ifelse(obs.count.col.norm > 0, sum(obs.phi.vec >= ES.value)/obs.count.col.norm, 0)
} else {
count.col.norm <- sum(phi.vec < 0)
obs.count.col.norm <- sum(obs.phi.vec < 0)
count.col[i] <- ifelse(count.col.norm > 0, sum(phi.vec <= ES.value)/count.col.norm, 0)
obs.count.col[i] <- ifelse(obs.count.col.norm > 0, sum(obs.phi.vec <= ES.value)/obs.count.col.norm, 0)
}
}
phi.norm.mean[k] <- mean(count.col)
obs.phi.norm.mean[k] <- mean(obs.count.col)
phi.norm.median[k] <- median(count.col)
obs.phi.norm.median[k] <- median(obs.count.col)
FDR.mean[k] <- ifelse(phi.norm.mean[k]/obs.phi.norm.mean[k] < 1, phi.norm.mean[k]/obs.phi.norm.mean[k], 1)
FDR.median[k] <- ifelse(phi.norm.median[k]/obs.phi.norm.median[k] < 1, phi.norm.median[k]/obs.phi.norm.median[k], 1)
}
# adjust q-values
if (adjust.FDR.q.val == T) {
pos.nes <- length(NES[NES >= 0])
min.FDR.mean <- FDR.mean[pos.nes]
min.FDR.median <- FDR.median[pos.nes]
for (k in seq(pos.nes - 1, 1, -1)) {
if (FDR.mean[k] < min.FDR.mean) {
min.FDR.mean <- FDR.mean[k]
}
if (min.FDR.mean < FDR.mean[k]) {
FDR.mean[k] <- min.FDR.mean
}
}
neg.nes <- pos.nes + 1
min.FDR.mean <- FDR.mean[neg.nes]
min.FDR.median <- FDR.median[neg.nes]
for (k in seq(neg.nes + 1, Ng)) {
if (FDR.mean[k] < min.FDR.mean) {
min.FDR.mean <- FDR.mean[k]
}
if (min.FDR.mean < FDR.mean[k]) {
FDR.mean[k] <- min.FDR.mean
}
}
}
obs.phi.norm.mean.sorted <- obs.phi.norm.mean[Orig.index]
phi.norm.mean.sorted <- phi.norm.mean[Orig.index]
FDR.mean.sorted <- FDR.mean[Orig.index]
FDR.median.sorted <- FDR.median[Orig.index]
# Compute global statistic
glob.p.vals <- vector(length=Ng, mode="numeric")
NULL.pass <- vector(length=nperm, mode="numeric")
OBS.pass <- vector(length=nperm, mode="numeric")
for (k in 1:Ng) {
NES[k] <- Obs.ES.norm.sorted[k]
if (NES[k] >= 0) {
for (i in 1:nperm) {
NULL.pos <- sum(phi.norm[,i] >= 0)
NULL.pass[i] <- ifelse(NULL.pos > 0, sum(phi.norm[,i] >= NES[k])/NULL.pos, 0)
OBS.pos <- sum(obs.phi.norm[,i] >= 0)
OBS.pass[i] <- ifelse(OBS.pos > 0, sum(obs.phi.norm[,i] >= NES[k])/OBS.pos, 0)
}
} else {
for (i in 1:nperm) {
NULL.neg <- sum(phi.norm[,i] < 0)
NULL.pass[i] <- ifelse(NULL.neg > 0, sum(phi.norm[,i] <= NES[k])/NULL.neg, 0)
OBS.neg <- sum(obs.phi.norm[,i] < 0)
OBS.pass[i] <- ifelse(OBS.neg > 0, sum(obs.phi.norm[,i] <= NES[k])/OBS.neg, 0)
}
}
glob.p.vals[k] <- sum(NULL.pass >= mean(OBS.pass))/nperm
}
glob.p.vals.sorted <- glob.p.vals[Orig.index]
# Produce results report
Obs.ES <- signif(Obs.ES, digits=5)
Obs.ES.norm <- signif(Obs.ES.norm, digits=5)
p.vals <- signif(p.vals, digits=4)
signal.strength <- signif(signal.strength, digits=3)
tag.frac <- signif(tag.frac, digits=3)
gene.frac <- signif(gene.frac, digits=3)
FDR.mean.sorted <- signif(FDR.mean.sorted, digits=5)
FDR.median.sorted <- signif(FDR.median.sorted, digits=5)
glob.p.vals.sorted <- signif(glob.p.vals.sorted, digits=5)
report <- data.frame(cbind(gs.names, size.G, all.gs.descs, Obs.ES, Obs.ES.norm, p.vals[,1], FDR.mean.sorted, p.vals[,2], tag.frac, gene.frac, signal.strength, FDR.median.sorted, glob.p.vals.sorted))
names(report) <- c("GS", "SIZE", "SOURCE", "ES", "NES", "NOM p-val", "FDR q-val", "FWER p-val", "Tag \\%", "Gene \\%", "Signal", "FDR (median)", "glob.p.val")
# print(report)
report2 <- report
report.index2 <- order(Obs.ES.norm, decreasing=T)
for (i in 1:Ng) {
report2[i,] <- report[report.index2[i],]
}
report3 <- report
report.index3 <- order(Obs.ES.norm, decreasing=F)
for (i in 1:Ng) {
report3[i,] <- report[report.index3[i],]
}
phen1.rows <- length(Obs.ES.norm[Obs.ES.norm >= 0])
phen2.rows <- length(Obs.ES.norm[Obs.ES.norm < 0])
report.phen1 <- report2[1:phen1.rows,]
report.phen2 <- report3[1:phen2.rows,]
rownames(report.phen1) <- as.vector(report.phen1[,1])
rownames(report.phen2) <- as.vector(report.phen2[,1])
return(list(report1 = report.phen1, report2 = report.phen2))
} # end of definition of GSEA.analysis
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
# G S E A -- Gene Set Enrichment Analysis
# Auxiliary functions and definitions
GSEA.GeneRanking <- function(A, class.labels, gene.labels, nperm, permutation.type = 0, sigma.correction = "GeneCluster", fraction=1.0, replace=F, reverse.sign= F) {
# This function ranks the genes according to the signal to noise ratio for the actual phenotype and also random permutations and bootstrap
# subsamples of both the observed and random phenotypes. It uses matrix operations to implement the signal to noise calculation
# in stages and achieves fast execution speed. It supports two types of permutations: random (unbalanced) and balanced.
# It also supports subsampling and bootstrap by using masking and multiple-count variables. When "fraction" is set to 1 (default)
# the there is no subsampling or boostrapping and the matrix of observed signal to noise ratios will have the same value for
# all permutations. This is wasteful but allows to support all the multiple options with the same code. Notice that the second
# matrix for the null distribution will still have the values for the random permutations
# (null distribution). This mode (fraction = 1.0) is the defaults, the recommended one and the one used in the examples.
# It is also the one that has be tested more thoroughly. The resampling and boostrapping options are intersting to obtain
# smooth estimates of the observed distribution but its is left for the expert user who may want to perform some sanity
# checks before trusting the code.
#
# Inputs:
# A: Matrix of gene expression values (rows are genes, columns are samples)
# class.labels: Phenotype of class disticntion of interest. A vector of binary labels having first the 1's and then the 0's
# gene.labels: gene labels. Vector of probe ids or accession numbers for the rows of the expression matrix
# nperm: Number of random permutations/bootstraps to perform
# permutation.type: Permutation type: 0 = unbalanced, 1 = balanced. For experts only (default: 0)
# sigma.correction: Correction to the signal to noise ratio (Default = GeneCluster, a choice to support the way it was handled in a previous package)
# fraction: Subsampling fraction. Set to 1.0 (no resampling). For experts only (default: 1.0)
# replace: Resampling mode (replacement or not replacement). For experts only (default: F)
# reverse.sign: Reverse direction of gene list (default = F)
#
# Outputs:
# s2n.matrix: Matrix with random permuted or bootstraps signal to noise ratios (rows are genes, columns are permutations or bootstrap subsamplings
# obs.s2n.matrix: Matrix with observed signal to noise ratios (rows are genes, columns are boostraps subsamplings. If fraction is set to 1.0 then all the columns have the same values
# order.matrix: Matrix with the orderings that will sort the columns of the obs.s2n.matrix in decreasing s2n order
# obs.order.matrix: Matrix with the orderings that will sort the columns of the s2n.matrix in decreasing s2n order
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
A <- A + 0.00000001
N <- length(A[,1])
Ns <- length(A[1,])
subset.mask <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
reshuffled.class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels1 <- matrix(0, nrow=Ns, ncol=nperm)
class.labels2 <- matrix(0, nrow=Ns, ncol=nperm)
order.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.order.matrix <- matrix(0, nrow = N, ncol = nperm)
s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.s2n.matrix <- matrix(0, nrow = N, ncol = nperm)
obs.gene.labels <- vector(length = N, mode="character")
obs.gene.descs <- vector(length = N, mode="character")
obs.gene.symbols <- vector(length = N, mode="character")
M1 <- matrix(0, nrow = N, ncol = nperm)
M2 <- matrix(0, nrow = N, ncol = nperm)
S1 <- matrix(0, nrow = N, ncol = nperm)
S2 <- matrix(0, nrow = N, ncol = nperm)
gc()
C <- split(class.labels, class.labels)
class1.size <- length(C[[1]])
class2.size <- length(C[[2]])
class1.index <- seq(1, class1.size, 1)
class2.index <- seq(class1.size + 1, class1.size + class2.size, 1)
for (r in 1:nperm) {
class1.subset <- sample(class1.index, size = ceiling(class1.size*fraction), replace = replace)
class2.subset <- sample(class2.index, size = ceiling(class2.size*fraction), replace = replace)
class1.subset.size <- length(class1.subset)
class2.subset.size <- length(class2.subset)
subset.class1 <- rep(0, class1.size)
for (i in 1:class1.size) {
if (is.element(class1.index[i], class1.subset)) {
subset.class1[i] <- 1
}
}
subset.class2 <- rep(0, class2.size)
for (i in 1:class2.size) {
if (is.element(class2.index[i], class2.subset)) {
subset.class2[i] <- 1
}
}
subset.mask[, r] <- as.numeric(c(subset.class1, subset.class2))
fraction.class1 <- class1.size/Ns
fraction.class2 <- class2.size/Ns
if (permutation.type == 0) { # random (unbalanced) permutation
full.subset <- c(class1.subset, class2.subset)
label1.subset <- sample(full.subset, size = Ns * fraction.class1)
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
m1 <- sum(!is.na(match(label1.subset, i)))
m2 <- sum(!is.na(match(full.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
if (i <= class1.size) {
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
} else if (permutation.type == 1) { # proportional (balanced) permutation
class1.label1.subset <- sample(class1.subset, size = ceiling(class1.subset.size*fraction.class1))
class2.label1.subset <- sample(class2.subset, size = floor(class2.subset.size*fraction.class1))
reshuffled.class.labels1[, r] <- rep(0, Ns)
reshuffled.class.labels2[, r] <- rep(0, Ns)
class.labels1[, r] <- rep(0, Ns)
class.labels2[, r] <- rep(0, Ns)
for (i in 1:Ns) {
if (i <= class1.size) {
m1 <- sum(!is.na(match(class1.label1.subset, i)))
m2 <- sum(!is.na(match(class1.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- m2
class.labels2[i, r] <- 0
} else {
m1 <- sum(!is.na(match(class2.label1.subset, i)))
m2 <- sum(!is.na(match(class2.subset, i)))
reshuffled.class.labels1[i, r] <- m1
reshuffled.class.labels2[i, r] <- m2 - m1
class.labels1[i, r] <- 0
class.labels2[i, r] <- m2
}
}
}
}
# compute S2N for the random permutation matrix
P <- reshuffled.class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- reshuffled.class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
s2n.matrix <- M1/S1
if (reverse.sign == T) {
s2n.matrix <- - s2n.matrix
}
gc()
for (r in 1:nperm) {
order.matrix[, r] <- order(s2n.matrix[, r], decreasing=T)
}
# compute S2N for the "observed" permutation matrix
P <- class.labels1 * subset.mask
n1 <- sum(P[,1])
M1 <- A %*% P
M1 <- M1/n1
gc()
A2 <- A*A
S1 <- A2 %*% P
S1 <- S1/n1 - M1*M1
S1 <- sqrt(abs((n1/(n1-1)) * S1))
gc()
P <- class.labels2 * subset.mask
n2 <- sum(P[,1])
M2 <- A %*% P
M2 <- M2/n2
gc()
A2 <- A*A
S2 <- A2 %*% P
S2 <- S2/n2 - M2*M2
S2 <- sqrt(abs((n2/(n2-1)) * S2))
rm(P)
rm(A2)
gc()
if (sigma.correction == "GeneCluster") { # small sigma "fix" as used in GeneCluster
S2 <- ifelse(0.2*abs(M2) < S2, S2, 0.2*abs(M2))
S2 <- ifelse(S2 == 0, 0.2, S2)
S1 <- ifelse(0.2*abs(M1) < S1, S1, 0.2*abs(M1))
S1 <- ifelse(S1 == 0, 0.2, S1)
gc()
}
M1 <- M1 - M2
rm(M2)
gc()
S1 <- S1 + S2
rm(S2)
gc()
obs.s2n.matrix <- M1/S1
gc()
if (reverse.sign == T) {
obs.s2n.matrix <- - obs.s2n.matrix
}
for (r in 1:nperm) {
obs.order.matrix[,r] <- order(obs.s2n.matrix[,r], decreasing=T)
}
return(list(s2n.matrix = s2n.matrix,
obs.s2n.matrix = obs.s2n.matrix,
order.matrix = order.matrix,
obs.order.matrix = obs.order.matrix))
}
GSEA.EnrichmentScore <- function(gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL) {
#
# Computes the weighted GSEA score of gene.set in gene.list.
# The weighted score type is the exponent of the correlation
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type is 1 or 2 it is
# necessary to input the correlation vector with the values in the same order as in the gene list.
#
# Inputs:
# gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset)
# weighted.score.type: Type of score: weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)
# correl.vector: A vector with the coorelations (e.g. signal to noise scores) corresponding to the genes in the gene list
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
# arg.ES: Location in gene.list where the peak running enrichment occurs (peak of the "mountain")
# RES: Numerical vector containing the running enrichment score for all locations in the gene list
# tag.indicator: Binary vector indicating the location of the gene sets (1's) in the gene list
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
tag.indicator <- sign(match(gene.list, gene.set, nomatch=0)) # notice that the sign is 0 (no tag) or 1 (tag)
no.tag.indicator <- 1 - tag.indicator
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
if (weighted.score.type == 0) {
correl.vector <- rep(1, N)
}
alpha <- weighted.score.type
correl.vector <- abs(correl.vector**alpha)
sum.correl.tag <- sum(correl.vector[tag.indicator == 1])
norm.tag <- 1.0/sum.correl.tag
norm.no.tag <- 1.0/Nm
RES <- cumsum(tag.indicator * correl.vector * norm.tag - no.tag.indicator * norm.no.tag)
max.ES <- max(RES)
min.ES <- min(RES)
if (max.ES > - min.ES) {
# ES <- max.ES
ES <- signif(max.ES, digits = 5)
arg.ES <- which.max(RES)
} else {
# ES <- min.ES
ES <- signif(min.ES, digits=5)
arg.ES <- which.min(RES)
}
return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))
}
OLD.GSEA.EnrichmentScore <- function(gene.list, gene.set) {
#
# Computes the original GSEA score from Mootha et al 2003 of gene.set in gene.list
#
# Inputs:
# gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset)
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
# arg.ES: Location in gene.list where the peak running enrichment occurs (peak of the "mountain")
# RES: Numerical vector containing the running enrichment score for all locations in the gene list
# tag.indicator: Binary vector indicating the location of the gene sets (1's) in the gene list
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
tag.indicator <- sign(match(gene.list, gene.set, nomatch=0)) # notice that the sign is 0 (no tag) or 1 (tag)
no.tag.indicator <- 1 - tag.indicator
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
norm.tag <- sqrt((N - Nh)/Nh)
norm.no.tag <- sqrt(Nh/(N - Nh))
RES <- cumsum(tag.indicator * norm.tag - no.tag.indicator * norm.no.tag)
max.ES <- max(RES)
min.ES <- min(RES)
if (max.ES > - min.ES) {
ES <- signif(max.ES, digits=5)
arg.ES <- which.max(RES)
} else {
ES <- signif(min.ES, digits=5)
arg.ES <- which.min(RES)
}
return(list(ES = ES, arg.ES = arg.ES, RES = RES, indicator = tag.indicator))
}
GSEA.EnrichmentScore2 <- function(gene.list, gene.set, weighted.score.type = 1, correl.vector = NULL) {
#
# Computes the weighted GSEA score of gene.set in gene.list. It is the same calculation as in
# GSEA.EnrichmentScore but faster (x8) without producing the RES, arg.RES and tag.indicator outputs.
# This call is intended to be used to asses the enrichment of random permutations rather than the
# observed one.
# The weighted score type is the exponent of the correlation
# weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted). When the score type is 1 or 2 it is
# necessary to input the correlation vector with the values in the same order as in the gene list.
#
# Inputs:
# gene.list: The ordered gene list (e.g. integers indicating the original position in the input dataset)
# gene.set: A gene set (e.g. integers indicating the location of those genes in the input dataset)
# weighted.score.type: Type of score: weight: 0 (unweighted = Kolmogorov-Smirnov), 1 (weighted), and 2 (over-weighted)
# correl.vector: A vector with the coorelations (e.g. signal to noise scores) corresponding to the genes in the gene list
#
# Outputs:
# ES: Enrichment score (real number between -1 and +1)
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
N <- length(gene.list)
Nh <- length(gene.set)
Nm <- N - Nh
loc.vector <- vector(length=N, mode="numeric")
peak.res.vector <- vector(length=Nh, mode="numeric")
valley.res.vector <- vector(length=Nh, mode="numeric")
tag.correl.vector <- vector(length=Nh, mode="numeric")
tag.diff.vector <- vector(length=Nh, mode="numeric")
tag.loc.vector <- vector(length=Nh, mode="numeric")
loc.vector[gene.list] <- seq(1, N)
tag.loc.vector <- loc.vector[gene.set]
tag.loc.vector <- sort(tag.loc.vector, decreasing = F)
if (weighted.score.type == 0) {
tag.correl.vector <- rep(1, Nh)
} else if (weighted.score.type == 1) {
tag.correl.vector <- correl.vector[tag.loc.vector]
tag.correl.vector <- abs(tag.correl.vector)
} else if (weighted.score.type == 2) {
tag.correl.vector <- correl.vector[tag.loc.vector]*correl.vector[tag.loc.vector]
tag.correl.vector <- abs(tag.correl.vector)
} else {
tag.correl.vector <- correl.vector[tag.loc.vector]**weighted.score.type
tag.correl.vector <- abs(tag.correl.vector)
}
norm.tag <- 1.0/sum(tag.correl.vector)
tag.correl.vector <- tag.correl.vector * norm.tag
norm.no.tag <- 1.0/Nm
tag.diff.vector[1] <- (tag.loc.vector[1] - 1)
tag.diff.vector[2:Nh] <- tag.loc.vector[2:Nh] - tag.loc.vector[1:(Nh - 1)] - 1
tag.diff.vector <- tag.diff.vector * norm.no.tag
peak.res.vector <- cumsum(tag.correl.vector - tag.diff.vector)
valley.res.vector <- peak.res.vector - tag.correl.vector
max.ES <- max(peak.res.vector)
min.ES <- min(valley.res.vector)
ES <- signif(ifelse(max.ES > - min.ES, max.ES, min.ES), digits=5)
return(list(ES = ES))
}
GSEA.Res2Frame <- function(filename = "NULL") {
#
# Reads a gene expression dataset in RES format and converts it into an R data frame
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
header.cont <- readLines(filename, n = 1)
temp <- unlist(strsplit(header.cont, "\t"))
colst <- length(temp)
header.labels <- temp[seq(3, colst, 2)]
ds <- read.delim(filename, header=F, row.names = 2, sep="\t", skip=3, blank.lines.skip=T, comment.char="", as.is=T)
colst <- length(ds[1,])
cols <- (colst - 1)/2
rows <- length(ds[,1])
A <- matrix(nrow=rows - 1, ncol=cols)
A <- ds[1:rows, seq(2, colst, 2)]
table1 <- data.frame(A)
names(table1) <- header.labels
return(table1)
}
GSEA.Gct2Frame <- function(filename = "NULL") {
#
# Reads a gene expression dataset in GCT format and converts it into an R data frame
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
ds <- read.delim(filename, header=T, sep="\t", skip=2, row.names=1, blank.lines.skip=T, comment.char="", as.is=T)
ds <- ds[-1]
return(ds)
}
GSEA.Gct2Frame2 <- function(filename = "NULL") {
#
# Reads a gene expression dataset in GCT format and converts it into an R data frame
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
content <- readLines(filename)
content <- content[-1]
content <- content[-1]
col.names <- noquote(unlist(strsplit(content[1], "\t")))
col.names <- col.names[c(-1, -2)]
num.cols <- length(col.names)
content <- content[-1]
num.lines <- length(content)
row.nam <- vector(length=num.lines, mode="character")
row.des <- vector(length=num.lines, mode="character")
m <- matrix(0, nrow=num.lines, ncol=num.cols)
for (i in 1:num.lines) {
line.list <- noquote(unlist(strsplit(content[i], "\t")))
row.nam[i] <- noquote(line.list[1])
row.des[i] <- noquote(line.list[2])
line.list <- line.list[c(-1, -2)]
for (j in 1:length(line.list)) {
m[i, j] <- as.numeric(line.list[j])
}
}
ds <- data.frame(m)
names(ds) <- col.names
row.names(ds) <- row.nam
return(ds)
}
GSEA.ReadClsFile <- function(file = "NULL") {
#
# Reads a class vector CLS file and defines phenotype and class labels vectors for the samples in a gene expression file (RES or GCT format)
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
cls.cont <- readLines(file)
num.lines <- length(cls.cont)
class.list <- unlist(strsplit(cls.cont[[3]], " "))
s <- length(class.list)
t <- table(class.list)
l <- length(t)
phen <- vector(length=l, mode="character")
phen.label <- vector(length=l, mode="numeric")
class.v <- vector(length=s, mode="numeric")
for (i in 1:l) {
phen[i] <- noquote(names(t)[i])
phen.label[i] <- i - 1
}
for (i in 1:s) {
for (j in 1:l) {
if (class.list[i] == phen[j]) {
class.v[i] <- phen.label[j]
}
}
}
return(list(phen = phen, class.v = class.v))
}
GSEA.Threshold <- function(V, thres, ceil) {
#
# Threshold and ceiling pre-processing for gene expression matrix
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
V[V < thres] <- thres
V[V > ceil] <- ceil
return(V)
}
GSEA.VarFilter <- function(V, fold, delta, gene.names = "NULL") {
#
# Variation filter pre-processing for gene expression matrix
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
cols <- length(V[1,])
rows <- length(V[,1])
row.max <- apply(V, MARGIN=1, FUN=max)
row.min <- apply(V, MARGIN=1, FUN=min)
flag <- array(dim=rows)
flag <- (row.max /row.min > fold) & (row.max - row.min > delta)
size <- sum(flag)
B <- matrix(0, nrow = size, ncol = cols)
j <- 1
if (gene.names == "NULL") {
for (i in 1:rows) {
if (flag[i]) {
B[j,] <- V[i,]
j <- j + 1
}
}
return(B)
} else {
new.list <- vector(mode = "character", length = size)
for (i in 1:rows) {
if (flag[i]) {
B[j,] <- V[i,]
new.list[j] <- gene.names[i]
j <- j + 1
}
}
return(list(V = B, new.list = new.list))
}
}
GSEA.NormalizeRows <- function(V) {
#
# Stardardize rows of a gene expression matrix
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
row.mean <- apply(V, MARGIN=1, FUN=mean)
row.sd <- apply(V, MARGIN=1, FUN=sd)
row.n <- length(V[,1])
for (i in 1:row.n) {
if (row.sd[i] == 0) {
V[i,] <- 0
} else {
V[i,] <- (V[i,] - row.mean[i])/row.sd[i]
}
}
return(V)
}
GSEA.NormalizeCols <- function(V) {
#
# Stardardize columns of a gene expression matrix
#
# The Broad Institute
# SOFTWARE COPYRIGHT NOTICE AGREEMENT
# This software and its documentation are copyright 2003 by the
# Broad Institute/Massachusetts Institute of Technology.
# All rights are reserved.
#
# This software is supplied without any warranty or guaranteed support
# whatsoever. Neither the Broad Institute nor MIT can be responsible for
# its use, misuse, or functionality.
col.mean <- apply(V, MARGIN=2, FUN=mean)
col.sd <- apply(V, MARGIN=2, FUN=sd)
col.n <- length(V[1,])
for (i in 1:col.n) {
if (col.sd[i] == 0) {
V[i,] <- 0
} else {
V[,i] <- (V[,i] - col.mean[i])/col.sd[i]
}
}
return(V)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.