#' Number of descendants
#'
#' Get the number of descendants for each node in the tree.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#' @importFrom ape Ntip
#' @param tree (phylo) a phylogenetic tree.
#' @return (numeric)
#' @seealso \code{\link[ape]{Ntip}, \link{getNodeIDs}}
#' @keywords internal
#' @examples
#' m <- matrix(c(0,1,2,3, 1,0,1.5,1.5, 2,1.5,0,1, 3,1.5,1,0), byrow = TRUE,
#' ncol = 4, dimnames = list(c("run1", "run2", "run3", "run4"),
#' c("run1", "run2", "run3", "run4")))
#' distMat <- as.dist(m, diag = FALSE, upper = FALSE)
#' \dontrun{
#' tree <- getTree(distMat)
#' getNodeIDs(tree)
#' nrDesc(tree)
#' }
nrDesc <- function(tree) {
res <- numeric(max(tree$edge))
res[1:Ntip(tree)] <- 1L
for (i in postorder(tree)) {
tmp <- tree$edge[i,1]
res[tmp] <- res[tmp] + res[tree$edge[i, 2]]
}
res
}
# nr_desc(k)
# phangorn::Descendants(k, node = "6", type = "children")
# getMRCA(k, c("1", "4"))
#' Create a phylogenetic tree
#'
#' Builds a phylogenetic tree from the distance matrix using UPGMA algorithm.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-05-31
#' @import phangorn ape
#' @param distMat (dist) a pairwise distance matrix.
#' @return (phylo) a tree.
#' @seealso \code{\link[phangorn]{upgma}, \link{getNodeIDs}}
#' @keywords internal
#' @examples
#' m <- matrix(c(0,1,2,3, 1,0,1.5,1.5, 2,1.5,0,1, 3,1.5,1,0), byrow = TRUE,
#' ncol = 4, dimnames = list(c("run1", "run2", "run3", "run4"),
#' c("run1", "run2", "run3", "run4")))
#' distMat <- as.dist(m, diag = FALSE, upper = FALSE)
#' \dontrun{
#' tree <- getTree(distMat)
#' }
#' tree <- ape::read.tree(text = "(run1:9,(run2:7,run0:2)master2:5)master1;")
#' plot(tree, type = "phylogram", show.node.label = TRUE)
#' ape::axisPhylo(1)
#' plot(tree, type = "unrooted", show.node.label = TRUE)
#' ape::edgelabels(tree$edge.length)
#' tree <- ape::nj(distMat) # Neighbor-Joining tree
#' plot(tree, type = "unrooted", show.node.label = TRUE)
#' ape::edgelabels(tree$edge.length)
getTree <- function(distMat, method = "average", prefix = "master"){
tree <- phangorn::upgma(distMat, method) # Use "single" to have it closely associate with MST.
tree <- ape::reorder.phylo(tree, "postorder")
tree <- ape::makeNodeLabel(tree, method = "number", prefix = prefix)
message("alignment order of runs in Newick format:")
message(ape::write.tree(tree))
tree
}
#' Get node IDs from tree
#'
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-05-31
#' @param tree (phylo) a phylogenetic tree.
#' @return (integer) a vector with names being node IDs.
#' @seealso \code{\link{getTree}}
#' @keywords internal
#' @examples
#' m <- matrix(c(0,1,2,3, 1,0,1.5,1.5, 2,1.5,0,1, 3,1.5,1,0), byrow = TRUE,
#' ncol = 4, dimnames = list(c("run1", "run2", "run3", "run4"),
#' c("run1", "run2", "run3", "run4")))
#' distMat <- as.dist(m)
#' \dontrun{
#' tree <- getTree(distMat)
#' getNodeIDs(tree)
#' }
getNodeIDs <- function(tree){
nodeIDs <- seq(from = 1L, to = length(tree$tip.label) + tree$Nnode)
names(nodeIDs) <- c(tree$tip.label, tree$node.label)
nodeIDs
}
# tree <- ape::read.tree(text = "(run10:17283.43333,((run2:4113.166667,(run7:3396.25,(run4:2431.5,run5:2431.5)master10:964.75)master7:716.9166667)master3:2836.026515,((run8:2588.25,(run14:2033.5,run15:2033.5)master13:554.75)master5:1882.958333,((run9:2011.75,(run11:1854.5,run6:1854.5)master15:157.25)master8:1574.116667,((run0:2035,run3:2035)master11:1171.333333,(run13:2451.75,(run1:1542.5,run12:1542.5)master14:909.25)master12:754.5833333)master9:379.5333333)master6:885.3416667)master4:2477.984848)master2:10334.24015)master1;")
cutTree <- function(tree, parts){
k1 <- stats::cutree(stats::as.hclust(tree), k = parts)
st <- ape::subtrees(tree)
o1 <- lapply(1:parts, function(i){
leaves <- names(which(k1 == i))
if(length(leaves) == 1) return (leaves)
for(j in seq_along(st)){
if(setequal(st[[j]]$tip.label, leaves)){
return(ape::reorder.phylo(st[[j]], "postorder"))
}
}
})
o1
}
ancesTree <- function(tree, stree){
vertices <- getNodeIDs(stree)
ord <- stree$edge[,2] # Traversal order
num_merge <- length(ord)/2
merge_start <- 2*(1:num_merge)-1
for(i in merge_start){
runA <- names(vertices)[vertices == ord[i]]
runB <- names(vertices)[vertices == ord[i+1]]
tree <- drop.tip(tree, tip = c(runA, runB), trim.internal = FALSE)
}
tree
}
#' Traverses up from leaves to the root
#'
#' @description {
#' While traversing from leaf to root node, at each node a master run is created.
#' Merged features and merged chromatograms from parent runs are estimated. Chromatograms are written on the disk
#' at dataPath/xics. For each precursor aligned parent time-vectors and corresponding child time-vector
#' are also calculated and written as *_av.rds at dataPath.
#'
#' Accesors to the new files are added to fileInfo, mzPntrs and prec2chromIndex. Features, reference
#' used for the alignment and adaptiveRTs of global alignments are also added to corresponding environment.
#' }
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-07-01
#' @inheritParams progAlignRuns
#' @inheritParams getRefRun
#' @param tree (phylo) a phylogenetic tree.
#' @param fileInfo (data-frame) output of \code{\link{getRunNames}}.
#' @param features (list of data-frames) contains features and their properties identified in each run.
#' @param mzPntrs (list) a list of mzRpwiz.
#' @param prec2chromIndex (list) a list of dataframes having following columns: \cr
#' transition_group_id: it is PRECURSOR.ID from osw file. \cr
#' chromatogramIndex: index of chromatogram in mzML file.
#' @param precursors (data-frame) atleast two columns transition_group_id and transition_ids are required.
#' @param adaptiveRTs (environment) For each descendant-pair, it contains the window around the aligned
#' retention time, within which features with m-score below aligned FDR are considered for quantification.
#' @param refRuns (environment) For each descendant-pair, the reference run is indicated by 1 or 2 for all the peptides.
#' @param multipeptide (environment) contains multiple data-frames that are collection of features
#' associated with analytes. This is an output of \code{\link{getMultipeptide}}.
#' @return (None)
#' @seealso \code{\link{getTree}, \link{getNodeRun}}
#' @keywords internal
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
#' params <- paramsDIAlignR()
#' fileInfo <- getRunNames(dataPath = dataPath)
#' mzPntrs <- list2env(getMZMLpointers(fileInfo))
#' features <- list2env(getFeatures(fileInfo, maxFdrQuery = params[["maxFdrQuery"]], runType = params[["runType"]]))
#' precursors <- getPrecursors(fileInfo, oswMerged = TRUE, runType = params[["runType"]],
#' context = "experiment-wide", maxPeptideFdr = params[["maxPeptideFdr"]])
#' precursors <- dplyr::arrange(precursors, .data$peptide_id, .data$transition_group_id)
#' peptideIDs <- unique(precursors$peptide_id)
#' peptideScores <- getPeptideScores(fileInfo, peptideIDs, oswMerged = TRUE, params[["runType"]], params[["context"]])
#' peptideScores <- lapply(peptideIDs, function(pep) dplyr::filter(peptideScores, .data$peptide_id == pep))
#' names(peptideScores) <- as.character(peptideIDs)
#' peptideScores <- list2env(peptideScores)
#' multipeptide <- getMultipeptide(precursors, features)
#' prec2chromIndex <- list2env(getChromatogramIndices(fileInfo, precursors, mzPntrs))
#' adaptiveRTs <- new.env()
#' refRuns <- new.env()
#' tree <- ape::read.tree(text = "(run1:9,(run2:7,run0:2)master2:5)master1;")
#' tree <- ape::reorder.phylo(tree, "postorder")
#' \dontrun{
#' ropenms <- get_ropenms(condaEnv = "envName", useConda=TRUE)
#' multipeptide <- traverseUp(tree, dataPath, fileInfo, features, mzPntrs, prec2chromIndex, precursors, params,
#' adaptiveRTs, refRuns, multipeptide, peptideScores, ropenms)
#' for(run in names(mzPntrs)) DBI::dbDisconnect(mzPntrs[[run]])
#' # Cleanup
#' file.remove(list.files(dataPath, pattern = "*_av.rds", full.names = TRUE))
#' file.remove(list.files(file.path(dataPath, "xics"), pattern = "^master[0-9]+\\.chrom\\.sqMass$", full.names = TRUE))
#' }
traverseUp <- function(tree, dataPath, fileInfo, features, mzPntrs, prec2chromIndex, precursors,
params, adaptiveRTs, refRuns, multipeptide, peptideScores, ropenms, applyFun = lapply){
vertices <- getNodeIDs(tree)
ord <- tree$edge[,2] # Traversal order
num_merge <- length(ord)/2
merge_start <- 2*(1:num_merge)-1
# Traverse to the root of all runs.
for(i in merge_start){
runA <- names(vertices)[vertices == ord[i]]
runB <- names(vertices)[vertices == ord[i+1]]
mergeName <- names(vertices)[vertices == ape::getMRCA(tree, c(ord[i], ord[i+1]))]
message(runA, " + ", runB, " = ", mergeName)
getNodeRun(runA, runB, mergeName, dataPath, fileInfo, features, mzPntrs, prec2chromIndex,
precursors, params, adaptiveRTs, refRuns, multipeptide, peptideScores, ropenms, applyFun)
}
assign("temp", fileInfo, envir = parent.frame(n = 1))
with(parent.frame(n = 1), fileInfo <- temp)
message("Created all master runs.")
invisible(NULL)
}
setRootRank <- function(tree, dataPath, fileInfo, multipeptide, prec2chromIndex, mzPntrs, precursors,params){
if(params[["chromFile"]] =="mzML") fetchXIC = extractXIC_group
if(params[["chromFile"]] =="sqMass") fetchXIC = extractXIC_group2
vertices <- getNodeIDs(tree)
ord <- rev(tree$edge[,1])
num_merge <- length(ord)/2
# set alignment rank for the master1 run.
master1 <- names(vertices)[vertices == ord[1]]
peptideIDs <- unique(precursors$peptide_id)
invisible(lapply(seq_along(peptideIDs), function(i){
##### Set alignment rank in the master1 #####
peptide <- peptideIDs[i]
df <- multipeptide[[i]]
indices <- which(df$run == master1)
refIdx <- indices[which(.subset2(df, "peak_group_rank")[indices] == 1L)]
refIdx <- refIdx[which.min(.subset2(df, "m_score")[refIdx])]
if(length(refIdx) == 0) return(NULL)
set(df, refIdx, 10L, 1L)
##### Set alignment rank for other precursors #####
idx <- precursors[.(peptide), which = TRUE]
analytes <- .subset2(precursors, "transition_group_id")[idx]
if(length(analytes)>1){
##### Get XIC_group from reference run. if missing, return unaligned features #####
chromIndices <- prec2chromIndex[[master1]][["chromatogramIndex"]][idx]
if(any(is.na(unlist(chromIndices))) | is.null(unlist(chromIndices))){
warning("Chromatogram indices for peptide ", peptide, " are missing in ", fileInfo[master1, "runName"])
message("Skipping peptide ", peptide, " in ", master1)
return(NULL)
} else {
XICs <- lapply(chromIndices, function(iM) fetchXIC(mzPntrs[[master1]], chromIndices = iM))
names(XICs) <- as.character(analytes)
}
setOtherPrecursors(df, refIdx, XICs, analytes, params)
}
}))
# Done
message("master1 has set alignment ranks.")
invisible(NULL)
}
#' Traverses down from the root to leaves
#'
#' Features of the root node are propagated to all leaves node. Aligned features are set/added in the
#' multipeptide environment.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-07-01
#' @inheritParams traverseUp
#' @param analytes (integer) this vector contains transition_group_id from precursors. It must be of
#' the same length as of multipeptide.
#' @return (None)
#' @seealso \code{\link{traverseUp}, \link{alignToMaster}}
#' @keywords internal
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
#' params <- paramsDIAlignR()
#' fileInfo <- getRunNames(dataPath = dataPath)
#' mzPntrs <- list2env(getMZMLpointers(fileInfo))
#' features <- list2env(getFeatures(fileInfo, maxFdrQuery = params[["maxFdrQuery"]], runType = params[["runType"]]))
#' precursors <- getPrecursors(fileInfo, oswMerged = TRUE, runType = params[["runType"]],
#' context = "experiment-wide", maxPeptideFdr = params[["maxPeptideFdr"]])
#' precursors <- dplyr::arrange(precursors, .data$peptide_id, .data$transition_group_id)
#' peptideIDs <- unique(precursors$peptide_id)
#' peptideScores <- getPeptideScores(fileInfo, peptideIDs, oswMerged = TRUE, params[["runType"]], params[["context"]])
#' peptideScores <- lapply(peptideIDs, function(pep) dplyr::filter(peptideScores, .data$peptide_id == pep))
#' names(peptideScores) <- as.character(peptideIDs)
#' prec2chromIndex <- list2env(getChromatogramIndices(fileInfo, precursors, mzPntrs))
#' multipeptide <- getMultipeptide(precursors, features)
#' adaptiveRTs <- new.env()
#' refRuns <- new.env()
#' tree <- ape::read.tree(text = "(run1:9,(run2:7,run0:2)master2:5)master1;")
#' tree <- ape::reorder.phylo(tree, "postorder")
#' \dontrun{
#' ropenms <- get_ropenms(condaEnv = "envName", useConda=TRUE)
#' multipeptide <- traverseUp(tree, dataPath, fileInfo, features, mzPntrs, prec2chromIndex, precursors, params,
#' adaptiveRTs, refRuns, multipeptide, peptideScores, ropenms)
#' multipeptide <- getMultipeptide(precursors, features)
#' multipeptide <- traverseDown(tree, dataPath, fileInfo, multipeptide, prec2chromIndex, mzPntrs, precursors,
#' adaptiveRTs, refRuns, params)
#' # Cleanup
#' for(run in names(mzPntrs)) DBI::dbDisconnect(mzPntrs[[run]])
#' file.remove(list.files(dataPath, pattern = "*_av.rds", full.names = TRUE))
#' file.remove(list.files(file.path(dataPath, "xics"), pattern = "^master[0-9]+\\.chrom\\.sqMass$", full.names = TRUE))
#' }
traverseDown <- function(tree, dataPath, fileInfo, multipeptide, prec2chromIndex, mzPntrs, precursors,
adaptiveRTs, refRuns, params, applyFun = lapply){
vertices <- getNodeIDs(tree)
ord <- rev(tree$edge[,1])
num_merge <- length(ord)/2
junctions <- 2*(1:num_merge)-1
# Traverse from root to leaf node.
for(i in junctions){
pair <- phangorn::Descendants(tree, node = ord[i], type = "children")
runA <- names(vertices)[vertices == pair[1]]
runB <- names(vertices)[vertices == pair[2]]
master <- names(vertices)[vertices == ord[i]]
message("Mapping peaks from ", master, " to ", runA, " and ", runB, ".")
# Get parents to master aligned time vectors.
filename <- file.path(dataPath, paste0(master, "_av.rds"))
alignedVecs <- readRDS(file = filename)
adaptiveRT <- max(adaptiveRTs[[paste(runA, runB, sep = "_")]],
adaptiveRTs[[paste(runB, runA, sep = "_")]])
# Map master to runA
refA <- refRuns[[master]][,1L][[1]]
alignToMaster(master, runA, alignedVecs, refA, adaptiveRT, multipeptide,
prec2chromIndex, mzPntrs, fileInfo, precursors, params, applyFun)
# Map master to runB
refB <- as.integer(!(refA-1))+1L
alignToMaster(master, runB, alignedVecs, refB, adaptiveRT, multipeptide,
prec2chromIndex, mzPntrs, fileInfo, precursors, params, applyFun)
}
# Done
message("master1 run has been propagated to all parents.")
invisible(NULL)
}
#' Align descendants to master
#'
#' During traverse-down, parent runs are aligned to the master/child run. This function performs the
#' alignment by already saved aligned parent-child time vectors. For the aligned peaks, alignment_rank is
#' set to 1 in multipeptide environment.
#'
#' refRun is flipped if eXp is runB instead of runA.
#' @author Shubham Gupta, \email{shubh.gupta@mail.utoronto.ca}
#'
#' ORCID: 0000-0003-3500-8152
#'
#' License: (c) Author (2020) + GPL-3
#' Date: 2020-07-19
#' @inherit alignToMaster params
#' @inheritParams traverseDown
#' @inheritParams getChildXICs
#' @param ref (string) name of the descendant run. Must be in the rownames of fileInfo.
#' @param eXp (string) name of one of the parent run. Must be in the rownames of fileInfo.
#' @param alignedVecs (list of dataframes) Each dataframe contains aligned parents time-vectors and
#' resulting child/master time vector for a precursor. This is the second element of
#' \code{\link{getChildXICs}} output.
#' @return (None)
#' @seealso \code{\link{traverseUp}, \link{traverseDown}, \link{setAlignmentRank}}
#' @keywords internal
#' @examples
#' dataPath <- system.file("extdata", package = "DIAlignR")
#' params <- paramsDIAlignR()
#' fileInfo <- DIAlignR::getRunNames(dataPath = dataPath)
#' mzPntrs <- list2env(getMZMLpointers(fileInfo))
#' features <- list2env(getFeatures(fileInfo, maxFdrQuery = 0.05, runType = "DIA_Proteomics"))
#' precursors <- getPrecursors(fileInfo, oswMerged = TRUE, runType = params[["runType"]],
#' context = "experiment-wide", maxPeptideFdr = params[["maxPeptideFdr"]])
#' precursors <- dplyr::arrange(precursors, .data$peptide_id, .data$transition_group_id)
#' peptideIDs <- unique(precursors$peptide_id)
#' peptideScores <- getPeptideScores(fileInfo, peptideIDs, oswMerged = TRUE, params[["runType"]], params[["context"]])
#' peptideScores <- lapply(peptideIDs, function(pep) dplyr::filter(peptideScores, .data$peptide_id == pep))
#' names(peptideScores) <- as.character(peptideIDs)
#' prec2chromIndex <- list2env(getChromatogramIndices(fileInfo, precursors, mzPntrs))
#' multipeptide <- getMultipeptide(precursors, features)
#' prec2chromIndex <- list2env(getChromatogramIndices(fileInfo, precursors, mzPntrs))
#' adaptiveRTs <- new.env()
#' refRuns <- new.env()
#' tree <- ape::reorder.phylo(ape::read.tree(text = "(run1:7,run2:2)master1;"), "postorder")
#' \dontrun{
#' ropenms <- get_ropenms(condaEnv = "envName", useConda=TRUE)
#' multipeptide <- traverseUp(tree, dataPath, fileInfo, features, mzPntrs, prec2chromIndex, precursors, params,
#' adaptiveRTs, refRuns, multipeptide, peptideScores, ropenms)
#' multipeptide <- getMultipeptide(precursors, features)
#' alignedVecs <- readRDS(file = file.path(dataPath, "master1_av.rds"))
#' adaptiveRT <- (adaptiveRTs[["run1_run2"]] + adaptiveRTs[["run2_run1"]])/2
#' multipeptide[["14383"]]$alignment_rank[multipeptide[["14383"]]$run == "master1"] <- 1L
#' multipeptide <- alignToMaster(ref = "master1", eXp = "run1", alignedVecs, refRuns[["master1"]][,1], adaptiveRT,
#' multipeptide, prec2chromIndex, mzPntrs, fileInfo, precursors, params)
#' # Cleanup
#' for(run in names(mzPntrs)) DBI::dbDisconnect(mzPntrs[[run]])
#' file.remove(file.path(dataPath, "master1_av.rds"))
#' file.remove(file.path(dataPath, "xics", "master1.chrom.sqMass"))
#' }
alignToMaster <- function(ref, eXp, alignedVecs, refRun, adaptiveRT, multipeptide, prec2chromIndex,
mzPntrs, fileInfo, precursors, params, applyFun = lapply){
peptideIDs <- unique(precursors$peptide_id)
if(params[["chromFile"]] =="sqMass") {
fetchXIC = extractXIC_group2
} else if(params[["chromFile"]] =="mzML"){
fetchXIC = extractXIC_group }
# Aign each peptide to its parent
num_of_batch <- ceiling(length(peptideIDs)/params[["batchSize"]])
invisible(lapply(1:num_of_batch, function(iBatch){
batchSize <- params[["batchSize"]]
strt <- ((iBatch-1)*batchSize+1)
stp <- min((iBatch*batchSize), length(multipeptide))
##### Get XICs for the batch from the experiment run #####
XICs <- lapply(strt:stp, function(rownum){
##### Get transition_group_id for that peptideID #####
idx <- which(precursors$peptide_id == peptideIDs[rownum])
analytes <- precursors[idx, "transition_group_id"][[1]]
##### Get XIC_group from runA and runB. If missing, add NULL #####
chromIndices <- prec2chromIndex[[eXp]][["chromatogramIndex"]][idx]
nope <- any(is.na(unlist(chromIndices))) | is.null(unlist(chromIndices))
if(nope) return(NULL)
xics <- lapply(chromIndices, function(i1) fetchXIC(mzPntrs[[eXp]], i1))
names(xics) <- as.character(analytes)
xics
})
# Align each peptide in multipeptide to its parent
invisible(lapply(strt:stp, function(i){
peptide <- peptideIDs[i]
idx <- (i - (iBatch-1)*batchSize)
alignedVec <- alignedVecs[[i]]
df <- multipeptide[[i]]
eXpIdx <- which(df[["run"]] == eXp)
##### Get XIC_group from reference run. if missing, return unaligned features #####
XICs.eXp <- XICs[[idx]]
analytes <- as.integer(names(XICs.eXp))
##### Check if any feature is below unaligned FDR. If present alignment_rank = 1. #####
if(any(.subset2(df, "m_score")[eXpIdx] <= params[["unalignedFDR"]], na.rm = TRUE)){
tempi <- eXpIdx[which.min(df$m_score[eXpIdx])]
set(df, tempi, 10L, 1L)
if(is.null(XICs.eXp)) return(invisible(NULL))
setOtherPrecursors(df, tempi, XICs.eXp, analytes, params)
return(invisible(NULL))
}
if(is.null(alignedVec)){
return(invisible(NULL)) # Try to set alignment rank without chromatogram
}
if(is.null(XICs.eXp)){
warning("Chromatogram indices for peptide ", peptide, " are missing in ", fileInfo[eXp, "runName"])
message("Skipping peptide ", peptide, " in ", eXp)
return(invisible(NULL))
}
# Update alignment rank for the eXp.
tAligned <- alignedVec[, c(3L, refRun[i])]
indices <- which(df$run == ref)
refIdx <- indices[which(.subset2(df, 10L)[indices] == 1L)]
if(length(refIdx) == 0L) return(invisible(NULL))
ss <- .subset2(df, "m_score")[refIdx]
refIdx <- ifelse(all(is.na(ss)), refIdx[1], refIdx[which.min(ss)])
setAlignmentRank(df, refIdx, eXp, tAligned, XICs.eXp, params, adaptiveRT)
tempi <- eXpIdx[which(df$alignment_rank[eXpIdx] == 1L)]
if(length(tempi) == 0L) return(invisible(NULL))
setOtherPrecursors(df, tempi, XICs.eXp, analytes, params)
invisible(NULL)
}))
invisible(NULL)
}))
message(eXp, " has been aligned to ", ref, ".")
invisible(NULL)
}
alignToRoot <- function(precursors, features, master1, multipeptide, fileInfo, prec2chromIndex, mzPntrs,
params, applyFun = lapply){
# Remove master runs from fileInfo.
fileInfo <- fileInfo[c(grep("run", rownames(fileInfo)), which(rownames(fileInfo) == master1)),]
# Calculate global alignment as star.
peptideIDs <- unique(precursors$peptide_id)
refRuns <- data.table("peptide_id" = peptideIDs, "run" = master1, key = "peptide_id")
globalFits <- getGlobalFits(refRuns, features, fileInfo, params[["globalAlignment"]],
params[["globalAlignmentFdr"]], params[["globalAlignmentSpan"]], applyFun)
RSE <- applyFun(globalFits, getRSE, params[["globalAlignment"]])
globalFits <- applyFun(globalFits, extractFit, params[["globalAlignment"]])
#### Star-align all runs to master1. ###########
message("Performing reference-based alignment.")
start_time <- Sys.time()
num_of_batch <- ceiling(length(multipeptide)/params[["batchSize"]])
invisible(
lapply(1:num_of_batch, perBatch, peptideIDs, multipeptide, refRuns, precursors,
prec2chromIndex, fileInfo, mzPntrs, params, globalFits, RSE, lapply)
)
invisible(NULL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.