R/dot-calcAssociation.R

Defines functions .calcAssociation

Documented in .calcAssociation

#' @title Compute associations between taxa
#'
#' @description Computes associations between taxa or distances between subjects
#'   for a given read count matrix
#'
#' @param countMat numeric read count matrix, where rows are samples and columns
#'   are OTUs/taxa.
#' @param measure character giving the measure used for estimating associations
#'   or dissimilarities
#' @param measurePar optional list with parameters passed to the function for
#'   estimating associations/dissimilarities
#' @param verbose if \code{TRUE}, progress messages are returned.
#'
#' @importFrom stats cor
#' @importFrom WGCNA bicor
#' @importFrom SpiecEasi spiec.easi sparseiCov getOptCov getRefit symBeta
#'   getOptBeta sparcc
#' @importFrom SPRING SPRING
#' @importFrom vegan vegdist
#' @import mixedCCA
#' @keywords internal 

.calcAssociation <- function(countMat, measure, measurePar, verbose) {
  
  if (measure == "pearson") {
    
    if (is.null(measurePar$use)) measurePar$use <- "complete.obs"
    
    assoMat <- stats::cor(countMat, use = measurePar$use, method = "pearson")
    
  } else if (measure == "spearman") {
    
    if (is.null(measurePar$use)) measurePar$use <- "complete.obs"
    
    assoMat <- stats::cor(countMat, use = measurePar$use, method = "spearman")
    
  } else if (measure == "bicor") {
    
    measurePar$x <- countMat
    measurePar$verbose <- ifelse(verbose == 3, 1, 0)
    if (verbose == 3) {
      message("")
    }
    assoMat <- do.call(WGCNA::bicor, measurePar)
    
  } else if (measure == "sparcc") {
    
    if (is.null(measurePar$inner_iter)) measurePar$inner_iter <- 20
    if (is.null(measurePar$th)) measurePar$th <- 0.1
    if (is.null(measurePar$iter)) measurePar$iter <- 100
    
    assoMat <- SpiecEasi::sparcc(countMat,
                                 inner_iter = measurePar$inner_iter,
                                 th = measurePar$th,
                                 iter = measurePar$iter)$Cor
    
    colnames(assoMat) <- rownames(assoMat) <- colnames(countMat)
    
  } else if (measure == "cclasso") {
    
    measurePar$x <- countMat
    measurePar$counts <- FALSE
    measurePar$pseudo <- 0
    
    measurePar$verbose <- ifelse(verbose == 3, TRUE, FALSE)
    if (verbose == 3) {
      message("")
    }
    
    assoMat <- do.call("cclasso", measurePar)$cor.w
    
  } else if (measure %in% c("reboot", "ccrepe")) {
    
    measurePar$x <- countMat
    measurePar$verbose <- ifelse(verbose == 3, TRUE, FALSE)
    if (verbose == 3) {
      message("")
    }
    
    if (is.null(measurePar$sim.score.args)) {
      measurePar$sim.score.args <- list(method = "pearson")
    }
    
    assoMat <- do.call(ccrepe::ccrepe, measurePar)$sim.score
    diag(assoMat) <- 1
    
  } else if (measure == "spieceasi") {
    
    if (!is.null(measurePar$symBetaMode)) {
      symBetaMode <- measurePar$symBetaMode
      measurePar$symBetaMode <- NULL
    } else {
      symBetaMode <- "ave"
    }
    
    measurePar$data <- countMat
    
    if (is.null(measurePar$method)) measurePar$method <- "mb"
    
    if (verbose == 3) {
      measurePar$verbose <- TRUE
      message("")
    } else {
      measurePar$verbose <- FALSE
    }
    
    spiecres <- do.call(SpiecEasi::spiec.easi, measurePar)
    
    if (spiecres$est$method == "glasso") {
      secor <- stats::cov2cor(as.matrix(getOptCov(spiecres)))
      assoMat <- secor * SpiecEasi::getRefit(spiecres)
    } else {
      assoMat <- SpiecEasi::symBeta(SpiecEasi::getOptBeta(spiecres), 
                                    mode = symBetaMode)
    }
    
    assoMat <- as.matrix(assoMat)
    
    colnames(assoMat) <- rownames(assoMat) <- colnames(countMat)
    diag(assoMat) <- 1
    
  } else if (measure == "spring") {
    
    if (!is.null(measurePar$symBetaMode)) {
      symBetaMode <- measurePar$symBetaMode
      measurePar$symBetaMode <- NULL
    } else {
      symBetaMode <- "ave"
    }
    
    measurePar$data <- countMat
    
    if (is.null(measurePar$lambdaseq)) measurePar$lambdaseq <- "data-specific"
    
    if (is.null(measurePar$ncores)) measurePar$ncores <- 1

    if (verbose == 3) {
      measurePar$verbose <- TRUE
      message("")
    } else {
      measurePar$verbose <- FALSE
    }
    
    springres <- do.call(SPRING::SPRING, measurePar)
    
    opt.K <- springres$output$stars$opt.index
    
    assoMat <- as.matrix(SpiecEasi::symBeta(springres$output$est$beta[[opt.K]],
                                            mode = symBetaMode))
    
    colnames(assoMat) <- rownames(assoMat) <- colnames(countMat)
    diag(assoMat) <- 1
    
  } else if (measure == "gcoda") {
    
    measurePar$x <- countMat
    measurePar$counts <- FALSE
    measurePar$pseudo <- 0
    
    measurePar$verbose <- ifelse(verbose == 3, TRUE, FALSE)
    if (verbose == 3) {
      message("")
    }
    
    gcodares <- do.call("gcoda", measurePar)
    assoMat <- gcodares$opt.icov
    
    assoLow <- assoMat[lower.tri(assoMat, diag = FALSE)]
    assoUp <- t(assoMat)[lower.tri(assoMat, diag = FALSE)]
    assoMean <- rowMeans(cbind(assoLow, assoUp))
    assoMat <- matrix(0, ncol = ncol(assoMat), nrow = nrow(assoMat))
    assoMat[lower.tri(assoMat, diag = FALSE)] <- assoMean
    assoMat <- t(assoMat)
    assoMat[lower.tri(assoMat, diag = FALSE)] <- assoMean
    
    if (any(abs(assoMat) > 1)) {
      warning("Estimated correlations outside [-1,1] detected ", 
              "(replaced by -1 or 1).")
      assoMat[assoMat < (-1)] <- -1
      assoMat[assoMat > 1] <- 1
    }
    
    colnames(assoMat) <- rownames(assoMat) <- colnames(countMat)
    
  } else if (measure == "propr") {
    
    measurePar$counts <- countMat
    if (is.null(measurePar$metric)) measurePar$metric <- "rho"
    
    assoMat <- suppressMessages(assoMat <- do.call(propr::propr, 
                                                   measurePar)@matrix)
    
  } else if (measure == "bray") {
    
    assoMat <- as.matrix(vegan::vegdist(countMat, method = "bray", 
                                        binary = FALSE, diag = FALSE, 
                                        upper = FALSE, na.rm = FALSE))
    
  } else if (measure == "euclidean") {
    
    assoMat <- as.matrix(vegan::vegdist(countMat, method = "euclidean",
                                        binary = FALSE, diag = FALSE, 
                                        upper = FALSE, na.rm = FALSE))
    
  } else if (measure %in% c("kld", "jeffrey")) {
    
    assoMat <- matrix(0, ncol = nrow(countMat), nrow = nrow(countMat))
    
    if (is.null(measurePar$base)) measurePar$base <- exp(1)
    
    for (i in 1:nrow(countMat)) {
      j = i + 1
      while(j <= nrow(countMat)) {
        assoMat[i, j] <- LaplacesDemon::KLD(countMat[i, ], countMat[j, ],
                                            base = measurePar$base)$mean.sum.KLD
        j <- j + 1
      }
    }
    
    assoMat[lower.tri(assoMat)] <- t(assoMat)[lower.tri(t(assoMat))]
    
    if (measure == "jeffrey") {
      assoMat <- assoMat * 2
    }
    
    colnames(assoMat) <- rownames(assoMat) <- rownames(countMat)
    diag(assoMat) <- 1
    
  } else if (measure == "jsd") {
    
    assoMat <- matrix(0, ncol = nrow(countMat), nrow = nrow(countMat))
    
    if (is.null(measurePar$base)) measurePar$base <- exp(1)
    
    for (i in 1:nrow(countMat)) {
      j = i + 1
      while(j <= nrow(countMat)) {
        P <- countMat[i, ]
        Q <- countMat[j, ]
        M <- 0.5 * (P + Q)
        
        assoMat[i, j] <- 0.5 * 
          LaplacesDemon::KLD(P, M, base = measurePar$base)$sum.KLD.px.py +
          0.5 * LaplacesDemon::KLD(Q, M, base = measurePar$base)$sum.KLD.px.py
        
        j <- j + 1
      }
    }
    
    assoMat[lower.tri(assoMat)] <- t(assoMat)[lower.tri(t(assoMat))]
    
    colnames(assoMat) <- rownames(assoMat) <- rownames(countMat)
    diag(assoMat) <- 1
    
  } else if (measure == "ckld") {
    assoMat <- matrix(0, ncol = nrow(countMat), nrow = nrow(countMat))
    
    if (is.null(measurePar$base)) measurePar$base <- exp(1)
    
    for (i in 1:nrow(countMat)) {
      j = i + 1
      while(j <= nrow(countMat)) {
        A1 <- mean(countMat[i, ] / countMat[j, ])
        A2 <- mean(countMat[j, ] / countMat[i, ])
        assoMat[i, j] <- ncol(countMat) / 2 * log(A1 * A2,
                                                  base = measurePar$base)
        j <- j + 1
      }
    }
    
    assoMat[lower.tri(assoMat)] <- t(assoMat)[lower.tri(t(assoMat))]
    
    colnames(assoMat) <- rownames(assoMat) <- rownames(countMat)
    diag(assoMat) <- 1
    
  } else if (measure == "aitchison") {
    
    measurePar$x.f <- countMat
    measurePar$mar <- 1
    
    if (is.null(measurePar$base)) measurePar$base <- exp(1)
    
    countMat_clr<- t(do.call(SpiecEasi::clr, measurePar))
    
    assoMat <- as.matrix(vegan::vegdist(countMat_clr, method = "euclidean"))
    
  } else {
    stop("Possible association/dissimilarity measures are: \n", 
         "'pearson', 'spearman', 'bicor', 'sparcc', 'cclasso', 'reboot', 'ccrepe', ", 
         "'bray', 'kld', 'jeffrey', 'jsd', 'aitchison', 'prop', 'spieceasi', ", 
         "'spring', 'gcoda'.")
  }
  
  
  if (any(is.na(assoMat))) {
    assoMat[is.na(assoMat)] <- 0
    warning("Association matrix contains NAs (replaced by zeros).")
  }
  
  return(assoMat)
}
stefpeschel/NetCoMi documentation built on Nov. 12, 2024, 7:12 a.m.