knitr::opts_chunk$set(fig.width = 10, fig.height = 6)
# Load data sets from American Gut Project (from SpiecEasi package)
data("amgut1.filt")
# Generate a random group vector
set.seed(123456)
group <- sample(1:2, nrow(amgut1.filt), replace = TRUE)
# Network construction:
amgut_net <- netConstruct(amgut1.filt, group = group,
measure = "pearson",
filtTax = "highestVar",
filtTaxPar = list(highestVar = 30),
zeroMethod = "pseudoZO", normMethod = "clr")
#---------------------
# Differential network
# Fisher's z-test
amgut_diff1 <- diffnet(amgut_net, diffMethod = "fisherTest")
# Network contains no differentially correlated taxa:
\dontrun{
plot(amgut_diff1)
}
# Without multiple testing correction (statistically not correct!)
amgut_diff2 <- diffnet(amgut_net, diffMethod = "fisherTest", adjust = "none")
plot(amgut_diff2)
\dontrun{
# Permutation test (permutation matrices are stored)
amgut_diff3 <- diffnet(amgut_net,
diffMethod = "permute",
nPerm = 1000L,
cores = 4L,
adjust = "lfdr",
storeCountsPerm = TRUE,
fileStoreCountsPerm = c("countsPerm1", "countsPerm2"),
storeAssoPerm = TRUE,
fileStoreAssoPerm = "assoPerm",
seed = 123456)
# Use the p-values again (different adjustment method possible), but without
# re-estimating the associations
amgut_diff4 <- diffnet(amgut_net,
diffMethod = "permute",
nPerm = 1000L,
adjust = "none",
pvalsVec = amgut_diff3$pvalsVec)
x11()
plot(amgut_diff4)
# Use the permutation associations again (same result as amgut_diff4)
amgut_diff5 <- diffnet(amgut_net,
diffMethod = "permute",
nPerm = 1000L,
adjust = "none",
fileLoadAssoPerm = "assoPerm")
x11()
plot(amgut_diff5)
# Use the permuted count matrices again (same result as amgut_diff4)
amgut_diff6 <- diffnet(amgut_net,
diffMethod = "permute",
nPerm = 1000L,
adjust = "none",
fileLoadCountsPerm = c("countsPerm1", "countsPerm2"),
seed = 123456)
x11()
plot(amgut_diff6)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.