set.seed(123456)
data("amgut1.filt")
data("amgut2.filt.phy")
groups_diss <- sample(0:1, ncol(amgut1.filt), replace = TRUE)
groups_asso <- sample(0:1, nrow(amgut1.filt), replace = TRUE)
net_asso_single <- netConstruct(amgut1.filt,
filtTax = "highestVar",
filtTaxPar = list(highestVar = 20),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101)
net_unweight_single <- netConstruct(amgut1.filt,
filtTax = "highestVar",
filtTaxPar = list(highestVar = 20),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101,
weighted = FALSE)
net_diss_single <- netConstruct(amgut1.filt,
filtTax = "totalReads",
filtTaxPar = list(totalReads = 1000),
filtSamp = "highestFreq",
filtSampPar = list(highestFreq = 20),
zeroMethod = "none", normMethod = "none",
measure = "aitchison",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101)
net_asso_two <- netConstruct(amgut1.filt, group = groups_asso,
filtTax = "highestVar",
filtTaxPar = list(highestVar = 20),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101)
net_unweight_two <- netConstruct(amgut1.filt, group = groups_asso,
filtTax = "highestVar",
filtTaxPar = list(highestVar = 20),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101,
weighted = FALSE)
net_diss_two <- netConstruct(amgut1.filt, group = groups_diss,
filtTax = "totalReads",
filtTaxPar = list(totalReads = 1000),
filtSamp = "highestFreq",
filtSampPar = list(highestFreq = 150),
zeroMethod = "none", normMethod = "none",
measure = "aitchison",
sparsMethod = "threshold", thresh = 0.3,
seed = 20190101)
networks <- c("net_asso_single", "net_diss_single", "net_unweight_single",
"net_asso_two", "net_diss_two", "net_unweight_two")
#===============================================================================
# centrLCC
context("netAnalyze: Test centrLCC")
centrLCC <- c(TRUE, FALSE)
for (i in 1:length(centrLCC)) {
context(centrLCC[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
centrLCC = centrLCC[i])
summary(testprops)
}
}
#===============================================================================
# avDissIgnoreInf
context("netAnalyze: Test avDissIgnoreInf ")
avDissIgnoreInf <- c(TRUE, FALSE)
for (i in 1:length(avDissIgnoreInf)) {
context(avDissIgnoreInf[i])
for (net in networks) {
#cat("avDissIgnoreInf: ", avDissIgnoreInf[i], "\n")
#print(net)
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
avDissIgnoreInf = avDissIgnoreInf[i])
summary(testprops)
#print(testprops$globalProps$avDiss1)
#print(testprops$globalPropsLCC$avDiss1)
}
}
#===============================================================================
# sPathAlgo
context("netAnalyze: Test sPathAlgo")
sPathAlgo <- c("unweighted", "dijkstra", "bellman-ford", "johnson", "automatic")
for (i in 1:length(sPathAlgo)) {
context(sPathAlgo[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
sPathAlgo = sPathAlgo[i])
summary(testprops)
}
}
#===============================================================================
# sPathNorm
context("netAnalyze: Test sPathNorm")
sPathNorm <- c(TRUE, FALSE)
for (i in 1:length(sPathNorm)) {
context(sPathNorm[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
sPathNorm = sPathNorm[i])
summary(testprops)
}
}
#===============================================================================
# normNatConnect
context("netAnalyze: Test normNatConnect")
normNatConnect <- c(TRUE, FALSE)
for (i in 1:length(normNatConnect)) {
context(normNatConnect[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
normNatConnect = normNatConnect[i])
summary(testprops)
}
}
#===============================================================================
# connectivity
context("netAnalyze: Test connectivity")
connectivity <- c(TRUE, FALSE)
for (i in 1:length(connectivity)) {
context(connectivity[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
connectivity = connectivity[i])
summary(testprops)
}
}
#===============================================================================
# Clustering
context("netAnalyze: Test clustering methods")
clustMethod <- c("none",
"hierarchical",
#"cluster_optimal",
"cluster_fast_greedy",
"cluster_louvain",
#"cluster_edge_betweenness",
"cluster_leading_eigen",
#"cluster_spinglass",
"cluster_walktrap")
for (i in 1:length(clustMethod)) {
context(clustMethod[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = clustMethod[i],
hubPar = "eigenvector", hubQuant = 0.95)
summary(testprops)
}
}
context("netAnalyze: Test hierarchical clustering")
for (i in 1:length(clustMethod)) {
context("hierarchical")
for (net in networks[4:6]) {
testprops<- netAnalyze(get(net),
clustMethod = "hierarchical",
clustPar = list(method = "complete", k = 3),
clustPar2 = list(method = "complete", k = 2),
hubPar = "eigenvector", hubQuant = 0.95)
summary(testprops)
}
}
#===============================================================================
# weightClustCoef
context("netAnalyze: Test weightClustCoef")
weightClustCoef <- c(TRUE, FALSE)
for (i in 1:length(weightClustCoef)) {
context(weightClustCoef[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
weightClustCoef = weightClustCoef[i])
summary(testprops)
}
}
#===============================================================================
# hubPar
context("netAnalyze: Test hubPar with multiple hub parameters")
hubPar <- c("degree", "betweenness", "closeness")
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = hubPar, hubQuant = 0.95)
summary(testprops)
}
context("netAnalyze: Test hubPar with eigencentr")
hubPar <- c("eigenvector")
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = hubPar, hubQuant = 0.95)
summary(testprops)
}
#===============================================================================
# lnormFit
context("netAnalyze: Test lnormFit ")
lnormFit <- c(TRUE, FALSE)
for (i in 1:length(lnormFit)) {
context(lnormFit[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
lnormFit = lnormFit[i])
summary(testprops)
}
}
#===============================================================================
# weightDeg
context("netAnalyze: Test weightDeg ")
weightDeg <- c(TRUE, FALSE)
for (i in 1:length(weightDeg)) {
context(weightDeg[i])
for (net in networks) {
testprops<- netAnalyze(get(net),
clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", hubQuant = 0.95,
weightDeg = weightDeg[i])
summary(testprops, showCentr = "degree")
}
}
#===============================================================================
context("netAnalyze: with non-normalized centralities")
for (net in networks) {
testprops<- netAnalyze(get(net), clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector", centrLCC = TRUE,
normDeg = FALSE,
normBetw = FALSE, normClose = FALSE, normEigen = FALSE,
hubQuant = 0.95)
summary(testprops)
}
#===============================================================================
context("plot.microNetProps: test different layouts")
testprops<- netAnalyze(net_asso_two, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
plot(testprops, sameLayout = FALSE)
plot(testprops, sameLayout = TRUE)
plot(testprops, sameLayout = TRUE, layoutGroup = 1)
plot(testprops, sameLayout = TRUE, layout = "layout_with_fr")
graph.tmp <- graph_from_adjacency_matrix(testprops$input$adjaMat1, weighted = TRUE)
lay.tmp <- layout_with_fr(graph.tmp)
rownames(lay.tmp) <- rownames(testprops$input$adjaMat1)
plot(testprops, layout = lay.tmp)
# unweighted network
testprops<- netAnalyze(net_unweight_two, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
plot(testprops, sameLayout = FALSE)
plot(testprops, sameLayout = TRUE)
plot(testprops, sameLayout = TRUE, layoutGroup = 1)
plot(testprops, sameLayout = TRUE, layout = "layout_with_fr")
graph.tmp <- graph_from_adjacency_matrix(testprops$input$adjaMat1, weighted = TRUE)
lay.tmp <- layout_with_fr(graph.tmp)
rownames(lay.tmp) <- rownames(testprops$input$adjaMat1)
plot(testprops, layout = lay.tmp)
# dissimilarity network
testprops<- netAnalyze(net_diss_two, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
plot(testprops, sameLayout = FALSE)
plot(testprops, sameLayout = TRUE, repulsion = 0.7)
plot(testprops, sameLayout = TRUE, layoutGroup = 1)
plot(testprops, sameLayout = TRUE, layout = "layout_with_fr")
graph.tmp <- graph_from_adjacency_matrix(testprops$input$adjaMat1, weighted = TRUE)
lay.tmp <- layout_with_fr(graph.tmp)
rownames(lay.tmp) <- rownames(testprops$input$adjaMat1)
plot(testprops, layout = lay.tmp)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.