set.seed(123456)
data("amgut1.filt")
groups_diss <- sample(0:1, ncol(amgut1.filt), replace = TRUE)
groups_asso <- sample(0:1, nrow(amgut1.filt), replace = TRUE)
context("test netCompare")
assonet2 <- netConstruct(amgut1.filt, group = groups_asso,
filtTax = "highestVar",
filtTaxPar = list(highestVar = 50),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
dissFunc = "signed",
seed = 20190101)
dissnet2 <- netConstruct(amgut1.filt, group = groups_diss,
filtTax = "totalReads",
filtTaxPar = list(highestVar = 1000),
filtSamp = "highestFreq",
filtSampPar = list(totalReads = 50),
zeroMethod = "none", normMethod = "none",
measure = "bray",
sparsMethod = "threshold", thresh = 0.3,
dissFunc = "signed",
seed = 20190101)
assoprops2 <- netAnalyze(assonet2, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
dissprops2 <- netAnalyze(dissnet2, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
context("association network; without permutation test")
netcomp_asso <- netCompare(assoprops2, permTest = FALSE)
context("association network; with permutation test")
netcomp_asso <- netCompare(assoprops2, permTest = TRUE, nPerm = 100, cores = 1L)
context("dissimilarity network; without permutation test")
netcomp_diss <- netCompare(dissprops2, permTest = FALSE)
context("dissimilarity network; with permutation test")
netcomp_diss <- netCompare(dissprops2, permTest = TRUE, nPerm = 100, cores = 1L)
context("test summary method")
summary(netcomp_asso)
summary(netcomp_diss)
#-------------------------------------------------------------------------------
context("differential network")
set.seed(123456)
context("permutation test")
diff_perm <- diffnet(assonet2, diffMethod = "permute", nPerm = 20, cores = 1L,
adjust = "none")
context("Fisher test")
diff_fisher <- diffnet(assonet2, diffMethod = "fisherTest", adjust = "none")
context("Discordant method")
diff_discord <- diffnet(assonet2, diffMethod = "discordant", adjust = "none")
context("test plot.diffnet")
plot(diff_perm)
plot(diff_fisher)
plot(diff_discord)
assonet3 <- netConstruct(assonet2$assoEst1,
data2 = assonet2$assoEst2,
dataType = "correlation",
filtTax = "highestVar",
filtTaxPar = list(highestVar = 50),
filtSamp = "totalReads",
filtSampPar = list(totalReads = 1000),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
dissFunc = "signed",
seed = 20190101)
context("Fisher test")
diff_fisher <- diffnet(assonet3, diffMethod = "fisherTest", adjust = "none",
n1 = sum(groups_asso == 0), n2 = sum(groups_asso == 1))
#-------------------------------------------------------------------------------
context("Small sample size")
suppressWarnings(assonet2 <- netConstruct(amgut1.filt[c(1,2,3,6), ],
group = groups_asso[c(1,2,3,6)],
filtTax = "highestVar",
filtTaxPar = list(highestVar = 50),
zeroMethod = "none", normMethod = "none",
measure = "pearson",
sparsMethod = "threshold", thresh = 0.3,
dissFunc = "signed",
seed = 20190101))
assoprops2 <- netAnalyze(assonet2, clustMethod = "cluster_fast_greedy",
hubPar = "eigenvector")
netcomp_asso <- netCompare(assoprops2, permTest = FALSE)
expect_error(netcomp_asso <- netCompare(assoprops2,
permTest = TRUE,
nPerm = 100, cores = 1L),
"Possible number of permutations")
expect_error(diff_perm <- diffnet(assonet2,
diffMethod = "permute",
nPerm = 100, cores = 1L,
adjust = "none"),
"Possible number of permutations")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.