View source: R/glm_sparse_net.R
cv.glmDegree | R Documentation |
network parameter accepts:
cv.glmDegree(
xdata,
ydata,
network,
options = networkOptions(),
experiment = NULL,
network.options = deprecated(),
experiment.name = deprecated(),
...
)
cv.glmHub(
xdata,
ydata,
network,
options = networkOptions(),
experiment = NULL,
network.options = deprecated(),
experiment.name = deprecated(),
...
)
cv.glmOrphan(
xdata,
ydata,
network,
options = networkOptions(),
experiment = NULL,
network.options = deprecated(),
experiment.name = deprecated(),
...
)
cv.glmSparseNet(
xdata,
ydata,
network,
options = networkOptions(),
experiment = NULL,
network.options = deprecated(),
experiment.name = deprecated(),
...
)
xdata |
input data, can be a matrix or MultiAssayExperiment. |
ydata |
response data compatible with glmnet. |
network |
type of network, see below. |
options |
options to calculate network. |
experiment |
name of experiment to use as input in MultiAssayExperiment object (only if xdata is an object of this class). |
network.options |
|
experiment.name |
|
... |
parameters that |
string to calculate network based on data (correlation, covariance)
matrix representing the network
vector with already calculated penalty weights (can also be used directly glmnet)
an object just as cv.glmnet
cv.glmDegree()
: penalizes nodes with small degree
(inversion penalization h(x) = 1 / x
).
cv.glmHub()
: penalizes nodes with small degree
(normalized heuristic that promotes nodes with many edges).
cv.glmOrphan()
: penalizes nodes with high degree
(normalized heuristic that promotes nodes with few edges).
Model with the same penalizations glmSparseNet()
.
# Degree penalization
xdata <- matrix(rnorm(100), ncol = 5)
cv.glmDegree(
xdata,
rnorm(nrow(xdata)),
"correlation",
family = "gaussian",
nfolds = 5,
options = networkOptions(minDegree = .2)
)
# Hub penalization
xdata <- matrix(rnorm(100), ncol = 5)
cv.glmHub(
xdata,
rnorm(nrow(xdata)),
"correlation",
family = "gaussian",
nfolds = 5,
options = networkOptions(minDegree = .2)
)
# Orphan penalization
xdata <- matrix(rnorm(100), ncol = 5)
cv.glmOrphan(
xdata,
rnorm(nrow(xdata)),
"correlation",
family = "gaussian",
nfolds = 5,
options = networkOptions(minDegree = .2)
)
# Gaussian model
xdata <- matrix(rnorm(500), ncol = 5)
cv.glmSparseNet(
xdata, rnorm(nrow(xdata)), "correlation",
family = "gaussian"
)
cv.glmSparseNet(
xdata, rnorm(nrow(xdata)), "covariance",
family = "gaussian"
)
#
#
# Using MultiAssayExperiment with survival model
library(MultiAssayExperiment)
data("miniACC", package = "MultiAssayExperiment")
xdata <- miniACC
#
# build valid data with days of last follow up or to event
event.ix <- which(!is.na(xdata$days_to_death))
cens.ix <- which(!is.na(xdata$days_to_last_followup))
xdata$surv_event_time <- array(NA, nrow(colData(xdata)))
xdata$surv_event_time[event.ix] <- xdata$days_to_death[event.ix]
xdata$surv_event_time[cens.ix] <- xdata$days_to_last_followup[cens.ix]
#
# Keep only valid individuals
valid.ix <- as.vector(!is.na(xdata$surv_event_time) &
!is.na(xdata$vital_status) &
xdata$surv_event_time > 0)
xdata.valid <- xdata[, rownames(colData(xdata))[valid.ix]]
ydata.valid <- colData(xdata.valid)[, c("surv_event_time", "vital_status")]
colnames(ydata.valid) <- c("time", "status")
#
cv.glmSparseNet(
xdata.valid,
ydata.valid,
nfolds = 5,
family = "cox",
network = "correlation",
experiment = "RNASeq2GeneNorm"
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.