degreeCov: Calculate the degree of the covariance network based on xdata

View source: R/degree_cov.R

degreeCovR Documentation

Calculate the degree of the covariance network based on xdata

Description

Calculate the degree of the covariance network based on xdata

Usage

degreeCov(
  xdata,
  cutoff = 0,
  considerUnweighted = FALSE,
  forceRecalcDegree = FALSE,
  forceRecalcNetwork = FALSE,
  nCores = 1,
  ...,
  consider.unweighted = deprecated(),
  force.recalc.degree = deprecated(),
  force.recalc.network = deprecated(),
  n.cores = deprecated()
)

Arguments

xdata

calculate correlation matrix on each column.

cutoff

positive value that determines a cutoff value.

considerUnweighted

consider all edges as 1 if they are greater than 0.

forceRecalcDegree

force recalculation of penalty weights (but not the network), instead of going to cache.

forceRecalcNetwork

force recalculation of network and penalty weights, instead of going to cache.

nCores

number of cores to be used.

...

extra parameters for cov function.

consider.unweighted

[Deprecated]

force.recalc.degree

[Deprecated]

force.recalc.network

[Deprecated]

n.cores

[Deprecated]

Value

a vector of the degrees

Examples

n.col <- 6
xdata <- matrix(rnorm(n.col * 4), ncol = n.col)
degreeCov(xdata)
degreeCov(xdata, cutoff = .5)
degreeCov(xdata, cutoff = .5, considerUnweighted = TRUE)

sysbiomed/glmSparseNet documentation built on Feb. 17, 2024, 1:38 p.m.