# node --------------------------------------------------------------------
partynode <- function(id, split = NULL, kids = NULL, surrogates = NULL, info = NULL, centroids = NULL) {
if (!is.integer(id) || length(id) != 1) {
id <- as.integer(id0 <- id)
if (any(is.na(id)) || !isTRUE(all.equal(id0, id)) || length(id) != 1)
stop(sQuote("id"), " ", "must be a single integer")
}
if (is.null(split) != is.null(kids)) {
stop(sQuote("split"), " ", "and", " ", sQuote("kids"), " ",
"must either both be specified or unspecified")
}
if (!is.null(kids)) {
if (!(is.list(kids) && all(sapply(kids, inherits, "partynode")))
|| length(kids) < 2)
stop(sQuote("kids"), " ", "must be an integer vector or a list of",
" ", sQuote("partynode"), " ", "objects")
}
if (!is.null(surrogates)) {
if (!is.list(surrogates) || any(!sapply(surrogates, inherits, "partysplit")))
stop(sQuote("split"), " ", "is not a list of", " ", sQuote("partysplit"),
" ", "objects")
}
node <- list(id = id, split = split, kids = kids, surrogates = surrogates, info = info, centroids = centroids)
class(node) <- "partynode"
return(node)
}
as.partynode.list <- function(x, ...) {
if (!all(sapply(x, inherits, what = "list")))
stop("'x' has to be a list of lists")
if (!all(sapply(x, function(x) "id" %in% names(x))))
stop("each list in 'x' has to define a node 'id'")
ok <- sapply(x, function(x)
all(names(x) %in% c("id", "split", "kids", "surrogates", "info", "centroids")))
if (any(!ok))
sapply(which(!ok), function(i)
warning(paste("list element", i, "defines additional elements:",
paste(names(x[[i]])[!(names(x[[i]]) %in%
c("id", "split", "kids", "surrogates", "info", "centroids"))],
collapse = ", "))))
ids <- as.integer(sapply(x, function(node) node$id))
if(any(duplicated(ids))) stop("nodeids must be unique integers")
x <- x[order(ids)]
ids <- ids[order(ids)]
new_recnode <- function(i) {
x_i <- x[[which(ids == i)]]
if (is.null(x_i$kids))
partynode(id = x_i$id, info = x_i$info)
else
partynode(id = x_i$id, split = x_i$split,
kids = lapply(x_i$kids, new_recnode),
surrogates = x_i$surrogates,
info = x_i$info)
}
ret <- new_recnode(ids[1L])
### <FIXME> duplicates recursion but makes sure
### that the ids are in pre-order notation with
### from defined in as.partynode.partynode
### </FIXME>
as.partynode(ret, ...)
}
kidids_node <- function(node, data, vmatch = 1:length(data), obs = NULL,
perm = NULL) {
primary <- split_node(node)
surrogates <- surrogates_node(node)
### perform primary split
x <- kidids_split(primary, data, vmatch, obs)
### surrogate / random splits if needed
if (any(is.na(x))) {
### surrogate splits
if (length(surrogates) >= 1) {
for (surr in surrogates) {
nax <- is.na(x)
if (!any(nax)) break;
x[nax] <- kidids_split(surr, data, vmatch, obs = obs)[nax]
}
}
nax <- is.na(x)
### random splits
if (any(nax)) {
prob <- prob_split(primary)
x[nax] <- sample(1:length(prob), sum(nax), prob = prob,
replace = TRUE)
}
}
### permute variable `perm' _after_ dealing with surrogates etc.
if (!is.null(perm)) {
if (is.integer(perm)) {
if (varid_split(primary) %in% perm)
x <- .resample(x)
} else {
if (is.null(obs)) obs <- 1:length(data)
strata <- perm[[varid_split(primary)]]
if (!is.null(strata)) {
strata <- strata[obs, drop = TRUE]
for (s in levels(strata))
x[strata == s] <- .resample(x[strata == s])
}
}
}
return(x)
}
kidids_node_predict <- function(node, data, vmatch = 1:length(data), obs = NULL,
perm = NULL) {
primary <- split_node(node)
surrogates <- surrogates_node(node)
### perform primary split
x <- kidids_split_predict(primary, data, vmatch, obs)
### surrogate / random splits if needed
if (any(is.na(x))) {
### surrogate splits
if (length(surrogates) >= 1) {
for (surr in surrogates) {
nax <- is.na(x)
if (!any(nax)) break;
x[nax] <- kidids_split_predict(surr, data, vmatch, obs = obs)[nax]
}
}
nax <- is.na(x)
### random splits
if (any(nax)) {
prob <- prob_split(primary)
x[nax] <- sample(1:length(prob), sum(nax), prob = prob,
replace = TRUE)
}
}
### permute variable `perm' _after_ dealing with surrogates etc.
if (!is.null(perm)) {
if (is.integer(perm)) {
if (varid_split(primary) %in% perm)
x <- .resample(x)
} else {
if (is.null(obs)) obs <- 1:length(data)
strata <- perm[[varid_split(primary)]]
if (!is.null(strata)) {
strata <- strata[obs, drop = TRUE]
for (s in levels(strata))
x[strata == s] <- .resample(x[strata == s])
}
}
}
return(x)
}
fitted_node <- function(node, data, vmatch = 1:length(data),
obs = 1:unique(sapply(data, NROW)), perm = NULL) {
if (is.logical(obs)) obs <- which(obs)
if (is.terminal(node))
return(rep(id_node(node), length(obs)))
retid <- nextid <- kidids_node(node, data, vmatch, obs, perm)
for (i in unique(nextid)) {
indx <- nextid == i
retid[indx] <- fitted_node(kids_node(node)[[i]], data,
vmatch, obs[indx], perm)
}
return(retid)
}
fitted_node_predict <- function(node, data, vmatch = 1:length(data),
obs = 1:unique(sapply(data, NROW)), perm = NULL) {
if (is.logical(obs)) obs <- which(obs)
if (is.terminal(node))
return(rep(id_node(node), length(obs)))
retid <- nextid <- kidids_node_predict(node, data, vmatch, obs, perm)
for (i in unique(nextid)) {
indx <- nextid == i
retid[indx] <- fitted_node_predict(kids_node(node)[[i]], data,
vmatch, obs[indx], perm)
}
return(retid)
}
# split -------------------------------------------------------------------
partysplit <- function(varid, breaks = NULL, index = NULL, right = TRUE,
prob = NULL, info = NULL, centroids = NULL, basid = NULL) {
### informal class for splits
split <- vector(mode = "list", length = 8)
names(split) <- c("varid", "breaks", "index", "right", "prob", "info", "centroids", "basid")
### split is an id referring to a variable
if (!is.integer(varid))
stop(sQuote("varid"), " ", "is not integer")
split$varid <- varid
if (is.null(breaks) && is.null(index))
stop("either", " ", sQuote("breaks"), " ", "or", " ",
sQuote("index"), " ", "must be given")
### vec
if (!is.null(breaks)) {
if (is.numeric(breaks) && (length(breaks) >= 1)) {
### FIXME: I think we need to make sure breaks are double in C
split$breaks <- as.double(breaks)
} else {
stop(sQuote("break"), " ",
"should be a numeric vector containing at least one element")
}
}
if (!is.null(index)) {
if (is.integer(index)) {
if (!(length(index) >= 2))
stop(sQuote("index"), " ", "has less than two elements")
if (!(min(index, na.rm = TRUE) == 1))
stop("minimum of", " ", sQuote("index"), " ", "is not equal to 1")
if (!all.equal(diff(sort(unique(index))), rep(1, max(index, na.rm = TRUE) - 1)))
stop(sQuote("index"), " ", "is not a contiguous sequence")
split$index <- index
} else {
stop(sQuote("index"), " ", "is not a class", " ", sQuote("integer"))
}
if (!is.null(breaks)) {
if (length(breaks) != (length(index) - 1))
stop("length of", " ", sQuote("breaks"), " ",
"does not match length of", " ", sQuote("index"))
}
}
if (is.logical(right) & !is.na(right))
split$right <- right
else
stop(sQuote("right"), " ", "is not a logical")
if (!is.null(prob)) {
if (!is.double(prob) ||
(any(prob < 0) | any(prob > 1) | !isTRUE(all.equal(sum(prob), 1))))
stop(sQuote("prob"), " ", "is not a vector of probabilities")
if (!is.null(index)) {
if (!(max(index, na.rm = TRUE) == length(prob)))
stop("incorrect", " ", sQuote("index"))
}
if (!is.null(breaks) && is.null(index)) {
if (!(length(breaks) == (length(prob) - 1)))
stop("incorrect", " ", sQuote("breaks"))
}
split$prob <- prob
}
if (!is.null(info))
split$info <- info
if (!is.null(centroids))
split$centroids <- centroids
if (!is.null(basid))
if (!is.integer(varid)){
stop(sQuote("varid"), " ", "is not integer")
} else {
split$basid <- basid
}
class(split) <- "partysplit"
return(split)
}
centroids_split <- function(split) {
if (!(inherits(split, "partysplit")))
stop(sQuote("split"), " ", "is not an object of class",
" ", sQuote("partysplit"))
split$centroids
}
basid_split <- function(split) {
if (!(inherits(split, "partysplit")))
stop(sQuote("split"), " ", "is not an object of class",
" ", sQuote("partysplit"))
split$basid
}
kidids_split <- function(split, data, vmatch = 1:length(data), obs = NULL) {
varid <- varid_split(split)
basid <- basid_split(split)
class(data) <- "list" ### speed up
if(!is.null(basid)){ #means we are in the coeff case
x <- data[[vmatch[varid]]][,basid]
} else { #means we are in the cluster case
x <- data[[vmatch[varid]]]
}
if (!is.null(obs)) x <- x[obs]
if (is.null(breaks_split(split))) {
if (storage.mode(x) != "integer")
stop("variable", " ", vmatch[varid], " ", "is not integer")
} else {
### labels = FALSE returns integers and is faster
### <FIXME> use findInterval instead of cut?
# x <- cut.default(as.numeric(x), labels = FALSE,
# breaks = unique(c(-Inf, breaks_split(split), Inf)), ### breaks_split(split) = Inf possible (MIA)
# right = right_split(split))
x <- .bincode(as.numeric(x), # labels = FALSE,
breaks = unique(c(-Inf, breaks_split(split), Inf)), ### breaks_split(split) = Inf possible (MIA)
right = right_split(split))
### </FIXME>
}
index <- index_split(split)
### empty factor levels correspond to NA and return NA here
### and thus the corresponding observations will be treated
### as missing values (surrogate or random splits):
if (!is.null(index))
x <- index[x]
return(x)
}
kidids_split_predict <- function(split, data, vmatch = 1:length(data), obs = NULL) {
varid <- varid_split(split)
basid <- basid_split(split)
class(data) <- "list" ### speed up
if(!is.null(basid)){ #means we are in the coeff case
x <- data[[vmatch[varid]]][,basid]
} else { #means we are in the cluster case
x <- data[[vmatch[varid]]]
}
if (!is.null(obs)) x <- x[obs]
if (is.null(breaks_split(split))) {
if(!is.null(centroids_split(split))){
cl.idx = lapply(centroids_split(split), compute.dissimilarity.cl, x = x, lp = 2)
x <- apply(matrix(unlist(cl.idx),ncol = 2),1, which.min)
}
if (storage.mode(x) != "integer")
stop("variable", " ", vmatch[varid], " ", "is not integer")
} else {
### labels = FALSE returns integers and is faster
### <FIXME> use findInterval instead of cut?
# x <- cut.default(as.numeric(x), labels = FALSE,
# breaks = unique(c(-Inf, breaks_split(split), Inf)), ### breaks_split(split) = Inf possible (MIA)
# right = right_split(split))
x <- .bincode(as.numeric(x), # labels = FALSE,
breaks = unique(c(-Inf, breaks_split(split), Inf)), ### breaks_split(split) = Inf possible (MIA)
right = right_split(split))
### </FIXME>
}
index <- index_split(split)
### empty factor levels correspond to NA and return NA here
### and thus the corresponding observations will be treated
### as missing values (surrogate or random splits):
if (!is.null(index) & is.null(centroids_split(split)))
x <- index[x]
return(x)
}
# party -------------------------------------------------------------------
## FIXME: data in party
## - currently assumed to be a data.frame
## - potentially empty
## - the following are all assumed to work:
## dim(data), names(data)
## sapply(data, class), lapply(data, levels)
## - potentially these need to be modified if data/terms
## should be able to deal with data bases
party <- function(node, data, fitted = NULL, terms = NULL, names = NULL, info = NULL) {
stopifnot(inherits(node, "partynode"))
#stopifnot(inherits(data, "list")) #give rise to problems for classif plots
### make sure all split variables are there
ids <- nodeids(node)[!nodeids(node) %in% nodeids(node, terminal = TRUE)]
varids <- unique(unlist(nodeapply(node, ids = ids, FUN = function(x)
varid_split(split_node(x)))))
#stopifnot(varids %in% 1:length(data))
if(!is.null(fitted)) {
stopifnot(inherits(fitted, "data.frame"))
stopifnot(all(sapply(data, NROW) == 0L) | all(sapply(data, NROW) == NROW(fitted)))
# try to provide default variable "(fitted)"
if(all(sapply(data, NROW) > 0L)) {
if(!("(fitted)" %in% names(fitted)))
fitted[["(fitted)"]] <- fitted_node(node, data = data)
} else {
stopifnot("(fitted)" == names(fitted)[1L])
}
nt <- nodeids(node, terminal = TRUE)
stopifnot(all(fitted[["(fitted)"]] %in% nt))
node <- as.partynode(node, from = 1L)
nt2 <- nodeids(node, terminal = TRUE)
fitted[["(fitted)"]] <- nt2[match(fitted[["(fitted)"]], nt)]
} else {
node <- as.partynode(node, from = 1L)
# default "(fitted)"
if(all(sapply(data, NROW) > 0L) & missing(fitted))
fitted <- data.frame("(fitted)" = fitted_node(node,
data = data), check.names = FALSE)
}
party <- list(node = node, data = data, fitted = fitted,
terms = NULL, names = NULL, info = info)
class(party) <- "party"
if(!is.null(terms)) {
stopifnot(inherits(terms, "terms"))
party$terms <- terms
}
if (!is.null(names)) {
n <- length(nodeids(party, terminal = FALSE))
if (length(names) != n)
stop("invalid", " ", sQuote("names"), " ", "argument")
party$names <- names
}
party
}
predict.party <- function(object, newdata = NULL, nb = 10, perm = NULL, ...)
{
split.type <- det_split.type(object)
if(!is.null(newdata)){
newdata = lapply(newdata, function(j){
if(class(j) == 'fdata' && split.type == "coeff"){
foo <- fda.usc::optim.basis(j, numbasis = nb)
fd3 <- fda.usc::fdata2fd(foo$fdata.est,
type.basis = "bspline",
nbasis = foo$numbasis.opt)
foo <- t(fd3$coefs)
return(foo)
} else if(class(j) == 'list' &
all(sapply(j, class) == 'igraph') & split.type == "coeff"){
foo <- graph.shell(j)
return(foo)
} else {
return(j)
}
}
)
}
### compute fitted node ids first
fitted <- if(is.null(newdata) && is.null(perm)) {
object$fitted[["(fitted)"]]
} else {
if (is.null(newdata)) newdata <- model.frame(object)
### make sure all the elements in newdata have the same number of rows
stopifnot(length(unique(sapply(newdata, NROW))) == 1L)
terminal <- nodeids(object, terminal = TRUE)
if(max(terminal) == 1L) {
rep.int(1L, unique(sapply(newdata, NROW)))
} else {
inner <- 1L:max(terminal)
inner <- inner[-terminal]
primary_vars <- nodeapply(object, ids = inner, by_node = TRUE, FUN = function(node) {
varid_split(split_node(node))
})
surrogate_vars <- nodeapply(object, ids = inner, by_node = TRUE, FUN = function(node) {
surr <- surrogates_node(node)
if(is.null(surr)) return(NULL) else return(sapply(surr, varid_split))
})
vnames <- names(object$data)
### the splits of nodes with a primary split in perm
### will be permuted
if (!is.null(perm)) {
if (is.character(perm)) {
stopifnot(all(perm %in% vnames))
perm <- match(perm, vnames)
} else {
### perm is a named list of factors coding strata
### (for varimp(..., conditional = TRUE)
stopifnot(all(names(perm) %in% vnames))
stopifnot(all(sapply(perm, is.factor)))
tmp <- vector(mode = "list", length = length(vnames))
tmp[match(names(perm), vnames)] <- perm
perm <- tmp
}
}
## ## FIXME: the is.na() call takes loooong on large data sets
## unames <- if(any(sapply(newdata, is.na)))
## vnames[unique(unlist(c(primary_vars, surrogate_vars)))]
## else
## vnames[unique(unlist(primary_vars))]
unames <- vnames[unique(unlist(c(primary_vars, surrogate_vars)))]
vclass <- structure(lapply(object$data, class), .Names = vnames)
ndnames <- names(newdata)
ndclass <- structure(lapply(newdata, class), .Names = ndnames)
checkclass <- all(sapply(unames, function(x)
isTRUE(all.equal(vclass[[x]], ndclass[[x]]))))
factors <- sapply(unames, function(x) inherits(object$data[[x]], "factor"))
checkfactors <- all(sapply(unames[factors], function(x)
isTRUE(all.equal(levels(object$data[[x]]), levels(newdata[[x]])))))
## FIXME: inform about wrong classes / factor levels?
if(all(unames %in% ndnames) && checkclass && checkfactors) {
vmatch <- match(vnames, ndnames)
fitted_node_predict(node_party(object), data = newdata,
vmatch = vmatch, perm = perm)
} else {
if (!is.null(object$terms)) {
### <FIXME> this won't work for multivariate responses
### </FIXME>
xlev <- lapply(unames[factors],
function(x) levels(object$data[[x]]))
names(xlev) <- unames[factors]
# mf <- model.frame(delete.response(object$terms), newdata,
# xlev = xlev)
# fitted_node_predict(node_party(object), data = newdata,
# vmatch = match(vnames, names(mf)), perm = perm)
fitted_node_predict(node_party(object), data = newdata,
perm = perm)
} else
stop("") ## FIXME: write error message
}
}
}
### compute predictions
predict_party(object, fitted, newdata, ...)
}
### do nothing expect returning the fitted ids
predict_party.default <- function(party, id, newdata = NULL, FUN = NULL, ...) {
if (length(list(...)) > 1)
warning("argument(s)", " ", sQuote(names(list(...))), " ", "have been ignored")
## get observation names: either node names or
## observation names from newdata
nam <- if(is.null(newdata)) {
if(is.null(rnam <- rownames(data_party(party)))) names(party)[id] else rnam
} else {
rownames(newdata[[1]])
}
if(length(nam) != length(id)) nam <- NULL
if (!is.null(FUN))
return(.simplify_pred(nodeapply(party,
nodeids(party, terminal = TRUE), FUN, by_node = TRUE), id, nam))
## special case: fitted ids
return(structure(id, .Names = nam))
}
predict_party.constparty <- function(party, id, newdata = NULL,
type = c("response", "prob", "quantile", "density", "node"),
at = if (type == "quantile") c(0.1, 0.5, 0.9),
FUN = NULL, simplify = TRUE, ...)
{
## extract fitted information
response <- party$fitted[["(response)"]]
weights <- party$fitted[["(weights)"]]
fitted <- party$fitted[["(fitted)"]]
if (is.null(weights)) weights <- rep(1, NROW(response))
## get observation names: either node names or
## observation names from newdata
nam <- if(is.null(newdata)) names(party)[id] else rownames(newdata[[1]])
if(length(nam) != length(id)) nam <- NULL
## match type
type <- match.arg(type)
## special case: fitted ids
if(type == "node")
return(structure(id, .Names = nam))
### multivariate response
if (is.data.frame(response)) {
ret <- lapply(response, function(r) {
ret <- .predict_party_constparty(node_party(party), fitted = fitted,
response = r, weights, id = id, type = type, at = at, FUN = FUN, ...)
if (simplify) .simplify_pred(ret, id, nam) else ret
})
if (all(sapply(ret, is.atomic)))
ret <- as.data.frame(ret)
names(ret) <- colnames(response)
return(ret)
}
### univariate response
ret <- .predict_party_constparty(node_party(party), fitted = fitted, response = response,
weights = weights, id = id, type = type, at = at, FUN = FUN, ...)
if (simplify) .simplify_pred(ret, id, nam) else ret[as.character(id)]
}
data_party.default <- function(party, id = 1L) {
extract <- function(id) {
if(is.null(party$fitted))
if(length(party$data) == 0) return(NULL)
else
stop("cannot subset data without fitted ids")
### which terminal nodes follow node number id?
nt <- nodeids(party, id, terminal = TRUE)
wi <- party$fitted[["(fitted)"]] %in% nt
ret <- if (length(party$data) == 0)
subset(party$fitted, wi)
else
subset(cbind(party$data, party$fitted), wi)
ret
}
if (length(id) > 1)
return(lapply(id, extract))
else
return(extract(id))
}
# plot --------------------------------------------------------------------
edge_simple <- function(obj, digits = 3, abbreviate = FALSE,
justmin = Inf, just = c("alternate", "increasing", "decreasing", "equal"),
fill = "white")
{
meta <- obj$data
split.type <- det_split.type(obj)
justfun <- function(i, split) {
myjust <- if(mean(nchar(split)) > justmin) {
match.arg(just, c("alternate", "increasing", "decreasing", "equal"))
} else {
"equal"
}
k <- length(split)
rval <- switch(myjust,
"equal" = rep.int(0, k),
"alternate" = rep(c(0.5, -0.5), length.out = k),
"increasing" = seq(from = -k/2, to = k/2, by = 1),
"decreasing" = seq(from = k/2, to = -k/2, by = -1)
)
unit(0.5, "npc") + unit(rval[i], "lines")
}
### panel function for simple edge labelling
function(node, i) {
split <- character_split(split_node(node), meta, digits = digits)$levels
y <- justfun(i, split)
split <- split[i]
# try() because the following won't work for split = "< 10 Euro", for example.
if(any(grep(">", split) > 0) | any(grep("<", split) > 0)) {
tr <- suppressWarnings(try(parse(text = paste("phantom(0)", split)), silent = TRUE))
if(!inherits(tr, "try-error")) split <- tr
}
if (split.type == 'coeff'){
grid.rect(y = y, gp = gpar(fill = fill, col = 0), width = unit(1, "strwidth", split))
grid.text(split, y = y, just = "center")
} else {
# the number of obs in each kid node is calculated as the number of commas
# appearing in split (which is a string where the levels are separated by
# commas), plus one
n_kid <- as.character(lengths(regmatches(split, gregexpr(",", split))) + 1)
n_kid <- paste('n =', n_kid)
grid.rect(y = y, gp = gpar(fill = fill, col = 0), width = unit(1, "strwidth", n_kid))
grid.text(n_kid, y = y, just = "center")
}
}
}
class(edge_simple) <- "grapcon_generator"
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.