#' @title plot association with LD and annotation at a given region
#' @description This function plot the association with
#' linkage disequiblism and annotation at the level of a region.
#' @author Hongwei Wang <\email{whweve@163.com}>
#' @param chr the chromosome, required.
#' @param left the left border of the region, required.
#' @param right the right border of the region, required.
#' @param gtf the annotation file, required.
#' @param association the association table, required.
#' @param hapmap the genotype file for computing leadsnpLD in the format of hapmap, required.
#' @param hapmap_ld the genotype file for computing trangleLD in the format of hapmap, not required. If hapmap_ld was not provided, hapmap would be used.
#' @param slide_length the sliding window length for computing LD, default -1.
#' @param threadN the number of (CPU) cores used for computing LD, default 1.
#' @param leadsnp snp name provided by user
#' @param threshold the significant level of the assocition, default NULL.
#' @param ldstatistics the statistics used for computing LD, default rsquare, and the optional is dprime.
#' @param link2gene a dataframe speicify markers to be linked from GWAS to genic structure, default NULL. When link2gene is 'NULL', locis that passed the threshold will be linked. Please see help('marker2link').
#' @param triangleLD show LD in the format lile triangle, default TRUE.
#' @param link2LD a dataframe speicify markers to be linked from genic structure to LD matrix, default NULL. When link2gene is 'NULL', locis that passed the threshold will be linked. Please see help('marker2link').
#' @param leadsnpLD show LD of the locis when compared with the most significant loci, default TRUE.
#' @param label_gene_name label the name of gene within the region, default FALSE.
#' @param colour02 the colour of LD statistics ranged between 0.0 and 0.2, default gray.
#' @param colour04 the colour of LD statistics ranged between 0.2 and 0.4, default cyan.
#' @param colour06 the colour of LD statistics ranged between 0.4 and 0.6, default green.
#' @param colour08 the colour of LD statistics ranged between 0.6 and 0.8, default yellow.
#' @param colour10 the colour of LD statistics ranged between 0.8 and 1.0, default red.
#' @param leadsnp_shape the shape of leadsnp, default 23. For others, please see help('points').
#' @param leadsnp_colour the shape of the point of leadsnp, default black. For others, please see help('points').
#' @param leadsnp_fill the filled colour of the point of leadsnp, default purple. For others, please see help('points').
#' @param leadsnp_size the size of of the point of leadsnp, default 1.5. For others, please see help('points').
#' @param marker2highlight a dataframe speicify markers to be showed by colour,shape,fill,size, default NULL. Please see help('marker2highlight').
#' @param marker2label a dataframe speicify markers to be labeled, default NULL. Please see help('marker2link')
#' @param marker2label_angle angel of labeled text, default 60.
#' @param marker2label_size size of labeled text, default 1.
#' @param thresholdlinecolour colour of threshold line, default gray.
#' @param upperpointsize size of point of association sites, default 1.
#' @param linkinglinecolor the color for the linking line, default gray
#' @return ggplot2 plot
#' @export
#' @import ggplot2 SNPRelate reshape2 gdsfmt ggrepel
#' @examples
#' data(gtf)
#' data(association)
#' data(hapmap_am368)
#' data(hapmap2)
#' IntRegionalPlot(chr=9,left=94178074-200000,right=94178074+200000,
#' gtf=gtf,association=association,hapmap=hapmap_am368,
#' hapmap_ld=hapmap_am368,threshold=5,leadsnp_size=2)
IntRegionalPlot <- function(chr, left, right, gtf, association, hapmap, hapmap_ld = NULL, linkinglinecolor="gray",
slide_length = -1, threadN = 1, ldstatistics = "rsquare", leadsnp = NULL, threshold = NULL,
link2gene = NULL, triangleLD = TRUE, link2LD = NULL, leadsnpLD = TRUE, label_gene_name = FALSE,
colour02 = "gray", colour04 = "cyan", colour06 = "green", colour08 = "yellow",
colour10 = "red", leadsnp_shape = 23, leadsnp_colour = "black", leadsnp_fill = "purple",
leadsnp_size = 1.5, marker2highlight = NULL, marker2label = NULL, marker2label_angle = 60,
marker2label_size = 1,thresholdlinecolour="gray",upperpointsize=1) {
if (names(association) %in% c("Marker", "Locus", "Site", "p") %>% sum() != 4 ) {
colpos <- which(!(c("Marker", "Locus", "Site", "p") %in% names(association)))
print(paste0("Required column ",c("Marker", "Locus", "Site", "p")[colpos]," not existed, this may lead to error. See IntAssoPlot::association for help"))
}
if (names(association) %in% c("Marker", "Locus", "Site", "p") %>% sum() == 4 ) {
print("checking association table. Done")
}
if (grepl("gene_id (\\S+) .+",gtf$V9) %>% sum() >=1) {
print("checking gtf table. Done")
}
if (grepl("gene_id (\\S+) .+",gtf$V9) %>% sum() == 0) {
print("No text like 'gene_id xxxxx' appeared in the ninth column of gtf. This may lead to error. Rebuild the gtf file from gff file using gffread. See IntAssoPlot::gtf for help")
}
if(names(hapmap)[1] != "rs") {
print("Converting the first column name to rs")
names(hapmap)[1] = "rs"
}
if(sum(association$Marker %in% hapmap$rs) >= 1) {
print("There are identical marker names within association file and the hapmap file. Done")
}
if(association$Marker %in% hapmap$rs %>% sum() ==0 ) {
print("There are no identical marker names within association file and the hapmap file. This may lead to error")
}
chromosome_association <- association[association$Locus == chr, ]
# transcript_corrdination <- gtf[grepl(transcript,gtf$V9),]
transcript_min <- left
transcript_max <- right
transcript_association <- chromosome_association[chromosome_association$Site >=
transcript_min & chromosome_association$Site <= transcript_max, ]
transcript_association <- transcript_association[order(transcript_association$Site), ]
if (dim(transcript_association)[1] < 2) {
stop("Less than 2 markers, can not compute LD")
} else {
R2 <- Site <- Site2 <- V4 <- V5 <- V9 <- group <- p <- NULL
x <- xend <- y <- yend <- aggregate <- NULL
# globalVariables(names(gtf)) globalVariables(names(association))
# globalVariables(names(hapmap)) compute the meta variable
pvalue_range <- pretty(-log10(transcript_association$p))
# adjust the yaxis to fit in the LD plot
fold <- ((transcript_max - transcript_min) * 2/3)/max(pvalue_range)
n_pvalue_range <- length(pvalue_range)
# marker_number = dim(transcript_association)[1] length =
# (transcript_max-transcript_min) distance = 0.5*length/(marker_number-1)
#gene_list <- gtf[gtf$V1 == chr & gtf$V2 == "protein_coding", ]
gene_list <- gtf[gtf$V1 == chr & grepl("exon",gtf$V3,ignore.case = TRUE),]
gene_list$V9 <- gsub("\"|;", "", gene_list$V9)
gene_list$V9 <- sub("gene_id (\\S+) .+", "\\1", gene_list$V9)
gene_list_start <- aggregate(V4 ~ V9, data = gene_list, FUN = min)
gene_list_end <- aggregate(V5 ~ V9, data = gene_list, FUN = max)
# gene_list <- gene_list[,-c('V4','V5')]
gene_list$V4 <- NULL
gene_list$V5 <- NULL
gene_list <- merge(gene_list, gene_list_start, by = "V9")
gene_list <- merge(gene_list, gene_list_end, by = "V9")
gene_list <- gene_list[!duplicated(gene_list$V9), ]
gene_list <- gene_list[gene_list$V4 >= transcript_min & gene_list$V5 <=
transcript_max, ]
gene_for <- gene_list[gene_list$V7 == "+", ]
gene_rev <- gene_list[gene_list$V7 == "-", ]
if (nrow(gene_for) >= 1) {
# plot forward strand gene
gene_for_seg <- list(geom_segment(data = gene_for, aes(x = V4, y = -(transcript_max -
transcript_min)/30, xend = V5, yend = -(transcript_max - transcript_min)/30),
arrow = arrow(length = unit(0.1, "cm"))))
} else {
gene_for_seg <- NULL
}
if (nrow(gene_rev) >= 1) {
# plot forward strand gene
gene_rev_seg <- list(geom_segment(data = gene_rev, aes(x = V5, y = -(transcript_max -
transcript_min)/15, xend = V4, yend = -(transcript_max - transcript_min)/15),
arrow = arrow(length = unit(0.1, "cm"))))
} else {
gene_rev_seg <- NULL
}
if (isTRUE(label_gene_name) & nrow(gene_for) >= 1) {
gene_for_seg_name <- list(geom_text_repel(data = gene_for, aes(x = V4,
y = -(transcript_max - transcript_min)/25, label = V9), size = 1.5,
angle = 25))
} else {
gene_for_seg_name <- NULL
}
if (isTRUE(label_gene_name) & nrow(gene_rev) >= 1) {
gene_rev_seg_name <- list(geom_text_repel(data = gene_rev, aes(x = V4,
y = -(transcript_max - transcript_min)/12, label = V9), size = 1.5,
angle = 25))
} else {
gene_rev_seg_name <- NULL
}
if (any(nrow(gene_rev) >= 1, nrow(gene_for) >= 1)) {
gene_box <- list(geom_segment(aes(x = rep(transcript_min, 2), xend = rep(transcript_max,
2), y = c(-(transcript_max - transcript_min)/12.5, -(transcript_max -
transcript_min)/45), yend = c(-(transcript_max - transcript_min)/12.5,
-(transcript_max - transcript_min)/45))), geom_segment(aes(x = c(transcript_min,
transcript_max), xend = c(transcript_min, transcript_max), y = c(-(transcript_max -
transcript_min)/12.5, -(transcript_max - transcript_min)/12.5),
yend = c(-(transcript_max - transcript_min)/45, -(transcript_max -
transcript_min)/45))), geom_segment(aes(x = c(transcript_min,
transcript_max), xend = c(transcript_min, transcript_max), y = c(-(transcript_max -
transcript_min)/12.5, -(transcript_max - transcript_min)/12.5),
yend = c(-(transcript_max - transcript_min)/11.5, -(transcript_max -
transcript_min)/11.5))), geom_text(aes(x = c(transcript_min,
transcript_max), y = rep(-(transcript_max - transcript_min)/10.2,
2)), label = c(transcript_min, transcript_max)))
} else {
gene_box <- list(NULL)
}
# decide whether to rotate x axis
scale_x <- list(scale_x_continuous(limits = c(transcript_min - (transcript_max -
transcript_min)/6, transcript_max), breaks = seq(transcript_min, transcript_max,
transcript_max - transcript_min)))
# label the yaxis
scale_y_line <- list(geom_segment(aes(x = transcript_min - (transcript_max -
transcript_min)/30, y = min(pvalue_range), xend = transcript_min -
(transcript_max - transcript_min)/30, yend = max(pvalue_range) * fold)))
scale_y_ticks <- list(geom_segment(aes(x = rep(transcript_min - (transcript_max -
transcript_min)/15, n_pvalue_range), y = pvalue_range * fold, xend = rep(transcript_min -
(transcript_max - transcript_min)/30, n_pvalue_range), yend = pvalue_range *
fold)))
scale_y_text <- list(geom_text(aes(x = rep(transcript_min - (transcript_max -
transcript_min)/12, n_pvalue_range), y = pvalue_range * fold, label = pvalue_range)))
# add threshold line
if (is.null(threshold)) {
threshold_line <- list(NULL)
}
if (all(length(threshold) > 0, threshold <= max(pvalue_range))) {
threshold_line <- list(geom_segment(aes(x = transcript_min, xend = transcript_max,
y = threshold * fold, yend = threshold * fold), linetype = "longdash",
colour = thresholdlinecolour))
}
if (all(length(threshold) > 0, threshold > max(pvalue_range))) {
threshold_line <- list(NULL)
print("no -log10(p) pass the threshold, will not draw threshold line")
}
# compute the LD, leadsnp or triangle
if (any(isTRUE(leadsnpLD), isTRUE(triangleLD)) & is.null(hapmap)) {
print("no hapmap data found, please provide the hapmap")
ld_leadsnp_colour <- list(NULL)
bottom_trianglLD = list(NULL)
}
if (all(!isTRUE(leadsnpLD), !isTRUE(triangleLD), !is.null(hapmap))) {
ld_leadsnp_colour <- list(NULL)
bottom_trianglLD <- list(NULL)
}
# link association and LD for the significant loci link between LD and genic
# structure
if (any(isTRUE(leadsnpLD), isTRUE(triangleLD)) & !is.null(hapmap)) {
names(hapmap) <- sub("#", "", names(hapmap))
# gene_snp <- hapmap[hapmap$rs %in% transcript_association$Marker,]
gene_snp <- hapmap[hapmap$chrom == chr & hapmap$pos >= transcript_min &
hapmap$pos <= transcript_max, ]
names(gene_snp) <- sub("#", "", names(gene_snp))
gene_snp <- gene_snp[!duplicated(gene_snp$rs), ]
# convert the SNP to numeric format
major_allele <- paste0(substr(gene_snp$allele, 1, 1), substr(gene_snp$allele,
1, 1))
minor_allele <- paste0(substr(gene_snp$allele, 3, 3), substr(gene_snp$allele,
3, 3))
heter_left <- paste0(substr(gene_snp$allele, 1, 1), substr(gene_snp$allele,
3, 3))
heter_right <- paste0(substr(gene_snp$allele, 3, 3), substr(gene_snp$allele,
1, 1))
# if allele equal to major allele, 0, else 2
for (j in 12:dim(gene_snp)[2]) {
gene_snp[gene_snp[, j] == major_allele, j] = 2
gene_snp[gene_snp[, j] == minor_allele, j] = 0
gene_snp[gene_snp[, j] == "NN", j] = NA
heter_position_left <- which(isTRUE(gene_snp[, j] == heter_left))
heter_position_right <- which(isTRUE(gene_snp[, j] == heter_right))
if (length(heter_position_left) > 1) {
gene_snp[heter_position_left, j] = 1
}
if (length(heter_position_right) > 1) {
gene_snp[heter_position_right, j] = 1
}
}
gene_snp2 <- gene_snp[, 12:dim(gene_snp)[2]]
gene_snp2 <- as.matrix(sapply(gene_snp2, as.numeric))
snpgdsCreateGeno(paste0(chr,left,right,"test.gds"), genmat = gene_snp2, sample.id = names(gene_snp)[12:dim(gene_snp)[2]],
snp.id = gene_snp$rs, snp.position = gene_snp$pos, snp.allele = gene_snp$alleles,
snpfirstdim = TRUE)
genofile <- snpgdsOpen(paste0(chr,left,right,"test.gds"))
if (ldstatistics == "rsquare") {
aa = snpgdsLDMat(genofile, slide = slide_length, method = "corr",
num.thread = threadN)
}
if (ldstatistics == "dprime") {
aa = snpgdsLDMat(genofile, slide = slide_length, method = "dprime",
num.thread = threadN)
}
snpgdsClose(genofile)
ld = aa$LD
if (ldstatistics == "rsquare")
ld <- ld^2
names(ld) <- gene_snp$rs
ld <- melt(ld)
marker_info <- data.frame(index = 1:dim(gene_snp)[1], marker_name = gene_snp$rs)
ld$Var1 <- marker_info$marker[match(ld$Var1, marker_info$index)]
ld$Var2 <- marker_info$marker[match(ld$Var2, marker_info$index)]
if (ldstatistics == "rsquare") {
lengend_name = expression(italic(r)^2)
} else if (ldstatistics == "dprime") {
lengend_name = expression(D * {
"'"
})
}
ld <- ld[!is.na(ld$value), ]
ld <- data.frame(Var1 = c(as.character(ld$Var1), as.character(ld$Var2)),
Var2 = c(as.character(ld$Var2), as.character(ld$Var1)), value = rep(ld$value,
2), stringsAsFactors = FALSE)
marker_pos <- transcript_association[, c("Marker", "Site")]
ld$Site1 <- marker_pos$Site[match(ld$Var1, marker_pos$Marker)]
ld$Site2 <- marker_pos$Site[match(ld$Var2, marker_pos$Marker)]
# ld <- merge(ld,marker_pos,by.x='Var1',by.y = 'Marker') ld <-
# merge(ld,marker_pos,by.x='Var2',by.y = 'Marker') names(ld) =
# sub('Site.x','Site1',names(ld)) names(ld) = sub('Site.y','Site2',names(ld))
if (isTRUE(leadsnpLD)) {
if (!is.null(leadsnp)) {
leadsnp <- leadsnp
}
if (is.null(leadsnp)) {
leadsnp <- as.character(transcript_association[which.min(transcript_association$p),
"Marker"])
}
ld_leadsnp <- ld[ld$Var1 == leadsnp, ]
ld_leadsnp <- merge(ld_leadsnp, transcript_association, by.x = "Var2",
by.y = "Marker")
if (length(which(ld_leadsnp$Var1 == leadsnp & ld_leadsnp$Var2 ==
leadsnp)) >= 1) {
ld_leadsnp <- ld_leadsnp[!(ld_leadsnp$Var1 == leadsnp & ld_leadsnp$Var2 ==
leadsnp), ]
}
ld_leadsnp$R2 <- 0.2 * (ld_leadsnp$value%/%0.2 + as.logical(ld_leadsnp$value%/%0.2))
ld_leadsnp$R2 <- as.character(ld_leadsnp$R2)
ld_leadsnp$R2[ld_leadsnp$R2 == "0"] = "0.2"
ld_leadsnp$R2[ld_leadsnp$R2 == "1.2"] = "1"
ld_leadsnp_colour <- list(geom_point(data = ld_leadsnp, aes(Site2,
-log10(p) * fold, fill = R2), shape = 21,colour = "black",size=upperpointsize),
scale_fill_manual(values = c(`0.2` = colour02, `0.4` = colour04,
`0.6` = colour06, `0.8` = colour08, `1` = colour10), labels = c("0-0.2",
"0.2-0.4", "0.4-0.6", "0.6-0.8", "0.8-1.0"), name = lengend_name))
}
if (!isTRUE(leadsnpLD)) {
ld_leadsnp_colour <- list(NULL)
}
if (is.null(hapmap_ld)) {
hapmap_ld = hapmap
}
hapmap_ld <- hapmap_ld[hapmap_ld$chrom == chr & hapmap_ld$pos >= transcript_min &
hapmap_ld$pos <= transcript_max, ]
marker_number = dim(hapmap_ld)[1]
length = (transcript_max - transcript_min)
distance = 0.5 * length/(marker_number - 1)
if (isTRUE(triangleLD)) {
names(hapmap_ld) <- sub("#", "", names(hapmap_ld))
gene_snp <- hapmap_ld
gene_snp <- gene_snp[order(gene_snp$chrom, gene_snp$pos), ]
names(gene_snp) <- sub("#", "", names(gene_snp))
gene_snp <- gene_snp[!duplicated(gene_snp$rs), ]
# convert the SNP to numeric format
major_allele <- paste0(substr(gene_snp$allele, 1, 1), substr(gene_snp$allele,
1, 1))
minor_allele <- paste0(substr(gene_snp$allele, 3, 3), substr(gene_snp$allele,
3, 3))
heter_left <- paste0(substr(gene_snp$allele, 1, 1), substr(gene_snp$allele,
3, 3))
heter_right <- paste0(substr(gene_snp$allele, 3, 3), substr(gene_snp$allele,
1, 1))
# if allele equal to major allele, 0, else 2
for (j in 12:dim(gene_snp)[2]) {
gene_snp[gene_snp[, j] == major_allele, j] = 2
gene_snp[gene_snp[, j] == minor_allele, j] = 0
gene_snp[gene_snp[, j] == "NN", j] = NA
heter_position_left <- which(isTRUE(gene_snp[, j] == heter_left))
heter_position_right <- which(isTRUE(gene_snp[, j] == heter_right))
if (length(heter_position_left) > 1) {
gene_snp[heter_position_left, j] = 1
}
if (length(heter_position_right) > 1) {
gene_snp[heter_position_right, j] = 1
}
}
gene_snp2 <- gene_snp[, 12:dim(gene_snp)[2]]
gene_snp2 <- as.matrix(sapply(gene_snp2, as.numeric))
snpgdsCreateGeno(paste0(chr,left,right,"test.gds"), genmat = gene_snp2, sample.id = names(gene_snp)[12:dim(gene_snp)[2]],
snp.id = gene_snp$rs, snp.position = gene_snp$pos, snp.allele = gene_snp$alleles,
snpfirstdim = TRUE)
genofile <- snpgdsOpen(paste0(chr,left,right,"test.gds"))
if (ldstatistics == "rsquare") {
aa = snpgdsLDMat(genofile, slide = slide_length, method = "corr",
num.thread = threadN)
}
if (ldstatistics == "dprime") {
aa = snpgdsLDMat(genofile, slide = slide_length, method = "dprime",
num.thread = threadN)
}
snpgdsClose(genofile)
ld = aa$LD
if (ldstatistics == "rsquare")
ld <- ld^2
names(ld) <- gene_snp$rs
ld <- melt(ld)
marker_info <- data.frame(index = 1:dim(gene_snp)[1], marker_name = gene_snp$rs)
ld$Var1 <- marker_info$marker[match(ld$Var1, marker_info$index)]
ld$Var2 <- marker_info$marker[match(ld$Var2, marker_info$index)]
if (ldstatistics == "rsquare") {
lengend_name = expression(italic(r)^2)
} else if (ldstatistics == "dprime") {
lengend_name = expression(D * {
"'"
})
}
ld <- ld[!is.na(ld$value), ]
ld <- data.frame(Var1 = c(as.character(ld$Var1), as.character(ld$Var2)),
Var2 = c(as.character(ld$Var2), as.character(ld$Var1)), value = rep(ld$value,
2), stringsAsFactors = FALSE)
# marker_pos <- hapmap_ld[, c('rs', 'pos')] ld$Site1 <-
# marker_pos$pos[match(ld$Var1, marker_pos$rs)] ld$Site2 <-
# marker_pos$pos[match(ld$Var2, marker_pos$rs)] ld <-
# merge(ld,marker_pos,by.x='Var1',by.y = 'rs') ld <-
# merge(ld,marker_pos,by.x='Var2',by.y = 'rs') names(ld) =
# sub('pos.x','Site1',names(ld)) names(ld) = sub('pos.y','Site2',names(ld))
# compute the LD position, the sequence ranged from small to big marker_pair =
# NULL center_x = NULL center_y = NULL
locib <- rep(1:(marker_number - 1), (marker_number - 1):1)
locia <- sequence((marker_number - 1):1)
marker_pair <- 1:length(locia)
center_x <- distance * (locia + locia + locib - 2)
center_y <- -locib * distance
upper_center_x <- center_x
upper_center_y <- center_y + distance
lower_center_x <- center_x
lower_center_y <- center_y - distance
left_center_x <- center_x - distance
left_center_y <- center_y
right_center_x <- center_x + distance
right_center_y <- center_y
poly_data <- data.frame(group = rep(marker_pair, 4), x = c(upper_center_x,
right_center_x, lower_center_x, left_center_x) + transcript_min,
y = c(upper_center_y, right_center_y, lower_center_y, left_center_y) -
4 * max(pvalue_range) * fold/30, label = rep(c(1, 2, 3, 4),
each = length(upper_center_x)), stringsAsFactors = FALSE)
# L <- NULL L$x <- c(upper_center_x,right_center_x, lower_center_x,
# left_center_x) + transcript_min L$y <- c(upper_center_y, right_center_y,
# lower_center_y, left_center_y) - 4 * max(pvalue_range) * fold/30 L$label <-
# rep(c(1, 2, 3, 4),each = length(upper_center_x)) L$marker1 <- rep(locia,4)
# L$marker2 <- rep(locia+locib,4) L$group <- paste0(L$marker1,'_',L$marker2) n
# <- length(L[[1]]) poly_data <- structure(L, row.names = c(NA, -n), class =
# 'data.frame')
poly_data$marker1 <- rep(locia, 4)
poly_data$marker2 <- rep(locia + locib, 4)
# transcript_association <-
# transcript_association[order(transcript_association$Site),]
# transcript_association$marker_number <- 1:dim(transcript_association)[1]
# marker_index <- transcript_association[,c('Marker','marker_number')]
hapmap_ld <- hapmap_ld[order(hapmap_ld$pos), ]
hapmap_ld$marker_number <- 1:dim(hapmap_ld)[1]
marker_index <- hapmap_ld[, c("rs", "marker_number")]
poly_data$Var1 <- marker_index$rs[match(poly_data$marker1, marker_index$marker_number)]
poly_data$Var2 <- marker_index$rs[match(poly_data$marker2, marker_index$marker_number)]
# poly_data <- merge(poly_data,marker_index,by.x='marker1',by.y =
# 'marker_number') poly_data <-
# merge(poly_data,marker_index,by.x='marker2',by.y = 'marker_number')
# names(poly_data) = sub('rs.x','Var1',names(poly_data)) names(poly_data) =
# sub('rs.y','Var2',names(poly_data))
poly_data$value <- ld$value[match(paste0(poly_data$Var1, "/", poly_data$Var2),
paste0(ld$Var1, "/", ld$Var2))]
# poly_data$Site1 <- ld$Site1[match(paste0(poly_data$Var1, '/',
# poly_data$Var2), paste0(ld$Var1, '/', ld$Var2))] poly_data$Site2 <-
# ld$Site2[match(paste0(poly_data$Var1, '/', poly_data$Var2), paste0(ld$Var1,
# '/', ld$Var2))] poly_data <- poly_data[poly_data$Var1 != leadsnp &
# poly_data$Var2 != leadsnp,] poly_data <-
# merge(poly_data,ld,by.x=c('Var1','Var2'),by.y = c('Var1','Var2'))
poly_data$R2 <- 0.2 * (poly_data$value%/%0.2 + as.logical(poly_data$value%/%0.2))
poly_data$R2 <- as.character(poly_data$R2)
poly_data$R2[poly_data$R2 == "0"] = "0.2"
poly_data$R2[poly_data$R2 == "1.2"] = "1"
# poly_data <- poly_data[order(poly_data$group, poly_data$label),]
if (!isTRUE(leadsnpLD)) {
bottom_trianglLD = list(geom_polygon(data = poly_data, aes(group = group,
x = x, y = y - (transcript_max - transcript_min)/50, fill = R2)),
scale_fill_manual(values = c(`0.2` = colour02, `0.4` = colour04,
`0.6` = colour06, `0.8` = colour08, `1` = colour10), labels = c("0-0.2",
"0.2-0.4", "0.4-0.6", "0.6-0.8", "0.8-1.0"), name = lengend_name))
}
if (isTRUE(leadsnpLD)) {
bottom_trianglLD = list(geom_polygon(data = poly_data, aes(group = group,
x = x, y = y - (transcript_max - transcript_min)/50, fill = R2)))
}
}
if (!isTRUE(triangleLD)) {
bottom_trianglLD <- list(NULL)
}
}
# link line from significant loci to the strucuture
if (!is.null(link2gene) & any(!is.null(threshold), is.null(threshold))) {
link_association_structure <- transcript_association[transcript_association$Marker %in%
link2gene$rs, ]
if (dim(link_association_structure)[1] == 0) {
print("no matched locis, will not draw linking line")
link_asso_gene <- list(NULL)
threshold_line <- list(NULL)
}
if (dim(link_association_structure)[1] > 0) {
link_number <- dim(link_association_structure)[1]
link_asso_gene <- list(geom_segment(data = link_association_structure,
aes(x = Site, xend = Site, y = rep(-max(pvalue_range) * fold/30,
link_number), yend = -log10(p) * fold), linetype = "longdash",
colour = linkinglinecolor))
}
}
if (is.null(link2gene) & is.null(threshold)) {
print("threshold acquired")
link_asso_gene <- list(NULL)
}
if (is.null(link2gene) & !is.null(threshold)) {
link_association_structure <- transcript_association[-log10(transcript_association$p) >=
threshold, ]
link_association_structure <- link_association_structure[!duplicated(link_association_structure$p),
]
if (dim(link_association_structure)[1] == 0) {
print("no -log10(p) pass the threshold, will not draw link")
link_asso_gene <- list(NULL)
threshold_line <- list(NULL)
}
if (dim(link_association_structure)[1] > 0) {
link_association_structure <- transcript_association[-log10(transcript_association$p) >=
threshold, ]
link_association_structure <- link_association_structure[!duplicated(link_association_structure$p),
]
link_number <- dim(link_association_structure)[1]
link_asso_gene <- list(geom_segment(data = link_association_structure,
aes(x = Site, xend = Site, y = rep(-max(pvalue_range) * fold/30,
link_number), yend = -log10(p) * fold), linetype = "longdash",
colour = linkinglinecolor))
}
}
# add linking line to link gene structure and LD matrix
if (isTRUE(triangleLD)) {
if (is.null(link2gene) & is.null(link2LD)) {
link_association_structure <- transcript_association[-log10(transcript_association$p) >=
threshold, ]
link_association_structure <- link_association_structure[!duplicated(link_association_structure$p),
]
link_number <- dim(link_association_structure)[1]
link_asso_gene <- list(geom_segment(data = link_association_structure,
aes(x = Site, xend = Site, y = rep(-max(pvalue_range) * fold/30,
link_number), yend = -log10(p) * fold), linetype = "longdash",
colour = linkinglinecolor))
marker_axis_LD_x <- transcript_min + (seq(1:marker_number) - 1) *
2 * distance
marker_axis_genic_x <- hapmap_ld$pos
marker_axis_LD_y <- rep(-5 * max(pvalue_range) * fold/30, marker_number)
marker_axis_genic_y <- rep(-max(pvalue_range) * fold/30, marker_number)
link_ld_data <- data.frame(x = marker_axis_LD_x, xend = marker_axis_genic_x,
y = marker_axis_LD_y, yend = marker_axis_genic_y)
link_ld_data <- link_ld_data[link_ld_data$xend %in% link_association_structure$Site,
]
link_LD_genic_structure <- geom_segment(data = link_ld_data, aes(x = x,
xend = xend, y = y, yend = yend), colour = linkinglinecolor, linetype = "longdash")
}
if (!is.null(link2gene) & !is.null(link2LD)) {
link_association_structure <- transcript_association[transcript_association$Marker %in%
link2LD$rs, ]
link_number <- dim(link_association_structure)[1]
link_asso_gene <- list(geom_segment(data = link_association_structure,
aes(x = Site, xend = Site, y = rep(-max(pvalue_range) * fold/30,
link_number), yend = -log10(p) * fold), linetype = "longdash",
colour = linkinglinecolor))
marker_axis_LD_x <- transcript_min + (seq(1:marker_number) - 1) *
2 * distance
marker_axis_genic_x <- hapmap_ld$pos
marker_axis_LD_y <- rep(-4.5 * max(pvalue_range) * fold/30, marker_number)
marker_axis_genic_y <- rep(-max(pvalue_range) * fold/30, marker_number)
link_ld_data <- data.frame(x = marker_axis_LD_x, xend = marker_axis_genic_x,
y = marker_axis_LD_y, yend = marker_axis_genic_y)
link_ld_data <- link_ld_data[link_ld_data$xend %in% link_association_structure$Site,
]
link_LD_genic_structure <- geom_segment(data = link_ld_data, aes(x = x,
xend = xend, y = y, yend = yend), colour = linkinglinecolor, linetype = "longdash")
}
}
if (!is.null(link2gene) & is.null(link2LD)) {
link_LD_genic_structure <- list(NULL)
}
if (is.null(link2gene) & !is.null(link2LD)) {
link_LD_genic_structure <- list(NULL)
}
if (!isTRUE(triangleLD)) {
link_LD_genic_structure <- list(NULL)
}
y_axis_text <- list(geom_text(aes(x = transcript_min - (transcript_max -
transcript_min)/6.5, y = mean(pvalue_range) * fold), label = "atop(-log[10]*italic(P)[observed])",
parse = TRUE, angle = 90))
if (isTRUE(triangleLD)) {
xtext <- list(geom_text(aes(x = (transcript_max + transcript_min)/2,
y = min(poly_data$y) - 10 * distance, label = paste0("Position on chr.",
chr, " (bp)"))))
} else {
xtext <- list(geom_text(aes(x = (transcript_max + transcript_min)/2,
y = -(transcript_max - transcript_min)/10, label = paste0("Position on chr.",
chr, " (bp)"))))
}
# add shape for the points of leadsnp
leadsnp2highlight <- transcript_association[transcript_association$Marker ==
leadsnp, ]
leadsnp2highlight_list <- list(geom_point(data = leadsnp2highlight, aes(x = Site,
y = -log10(p) * fold), shape = leadsnp_shape, colour = leadsnp_colour,
fill = leadsnp_fill, size = leadsnp_size))
# change the shape,size,colour, and fill for highlighted marker
if (is.null(marker2highlight)) {
marker2highlight_list = list(NULL)
} else {
marker2highlight <- merge(marker2highlight, transcript_association,
by.x = "rs", by.y = "Marker")
# marker2highlight_list = list(geom_point(data=marker2highlight, aes(Site,
# -log10(p) * fold, shape=factor(shape), colour=factor(colour),
# fill=factor(fill), size=factor(size))))
marker2highlight_list = list(annotate("point", x = marker2highlight$Site,
y = -log10(marker2highlight$p) * fold, shape = marker2highlight$shape,
colour = marker2highlight$colour, size = marker2highlight$size,
fill = marker2highlight$fill))
}
if (!is.null(marker2label)) {
marker2label <- merge(marker2label, transcript_association, by.x = "rs",
by.y = "Marker")
# marker2label_list <-
# list(annotate('text',x=marker2label$Site,y=-log10(marker2label$p) *
# fold,label=marker2label$rs,angle=marker2label_angle))
marker2label_list <- list(geom_text_repel(aes(x = marker2label$Site,
y = -log10(marker2label$p) * fold, label = marker2label$rs), angle = marker2label_angle,
size = marker2label_size))
} else {
marker2label_list <- list(NULL)
}
# plot the reduced point if highlighted marker exited
if (is.null(marker2highlight)) {
transcript_association = transcript_association
} else {
transcript_association = transcript_association[!(transcript_association$Marker %in%
marker2highlight$rs), ]
}
#remove the output test.gds
file.remove(paste0(chr,left,right,"test.gds"))
plot <- ggplot() + threshold_line + link_asso_gene + link_LD_genic_structure +
geom_point(data = transcript_association, aes(Site, -log10(p) * fold),
shape = 21, colour = "black", fill = "black",size=upperpointsize) + ld_leadsnp_colour +
gene_box + bottom_trianglLD + gene_for_seg_name + gene_rev_seg_name +
gene_for_seg + gene_rev_seg + scale_x + scale_y_line + scale_y_ticks +
scale_y_text + y_axis_text + xtext + leadsnp2highlight_list + marker2highlight_list +
marker2label_list + theme_bw() + theme(legend.key = element_rect(colour = "black"),
axis.ticks = element_blank(), panel.border = element_blank(), panel.grid = element_blank(),
axis.text = element_blank(), axis.title = element_blank(), text = element_text(size = 15,
face = "bold"))
return(plot)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.