EBMultiTest <-
function(Data,NgVector=NULL,Conditions, sizeFactors, uc = 0, AllParti=NULL,fast = T,Alpha=NULL, Beta=NULL, Qtrm=1, QtrmCut=0
,maxround = 50, step1 = 1e-6,step2 = 0.01, thre = log(2), sthre = 0, filter = 10, stopthre = 1e-4, nequal = 2)
{
expect_is(sizeFactors, c("numeric","integer"))
expect_is(maxround, c("numeric","integer"))
if(!is.factor(Conditions))Conditions=as.factor(Conditions)
if(is.null(rownames(Data)))stop("Please add gene/isoform names to the data matrix")
if(!is.matrix(Data))stop("The input Data is not a matrix")
if(length(Conditions)!=ncol(Data))stop("The number of conditions is not the same as the number of samples! ")
if(nlevels(Conditions)==2)stop("Only 2 conditions - Please use EBTest() function")
if(nlevels(Conditions)<2)stop("Less than 2 conditions - Please check your input")
if(length(sizeFactors)!=length(Data) & length(sizeFactors)!=ncol(Data))
stop("The number of library size factors is not the same as the number of samples!")
if(length(unique(Conditions)) < 2){
stop("there is only one condition")
}
if(length(unique(Conditions)) <= uc){
stop("uncertain positison must be smaller than number of conditions")
}
#Normalized
DataNorm=GetNormalizedMat(Data, sizeFactors)
QuantileFor0=apply(DataNorm,1,function(i)quantile(i,Qtrm))
AllZeroNames=which(QuantileFor0<=QtrmCut)
NotAllZeroNames=which(QuantileFor0>QtrmCut)
if(length(AllZeroNames)>0)
cat(paste0("Removing transcripts with ",Qtrm*100,
" th quantile < = ",QtrmCut," \n",
length(NotAllZeroNames)," transcripts will be tested \n"))
if(length(NotAllZeroNames)==0)stop("0 transcript passed")
Data=Data[NotAllZeroNames,]
if(!is.null(NgVector))
{
if(length(NgVector) != nrow(DataNorm))
{
stop("NgVector should have same size as number of genes")
}
NgVector = NgVector[NotAllZeroNames]
NgVector = as.factor(NgVector)
levels(NgVector) = 1:length(levels(NgVector))
}
# determine whether to use fast or regular EBSeq
if(fast){
# fast EBSeq method
# default setting for isoform label, when no input
if(is.null(NgVector)){NgVector = 1}
# default setting for hyper-parameters alpha and beta (beta prior)
if(is.null(Alpha))
{
Alpha = 0.4
}
if(is.null(Beta))
{
# for EBSeqTest to set up initial value of beta
Beta = 0
}
# gene-level mean
MeanList=rowMeans(DataNorm)
# gene-level variance
VarList=apply(DataNorm, 1, var)
# conditions
cd = Conditions
levels(cd) = 1:length(levels(cd))
# check if AllParti is valid
if(!is.null(AllParti)){
if(!is.matrix(AllParti)){
stop("AllParti should be matrix")
}
if(ncol(AllParti) != length(levels(cd))){
stop("AllParti should have same number of columns as the number of conditions(groups)")
}
}
## default to have K - 1 position uncertain
if(uc == 0){
uc = length(levels(cd)) - 1
}
# run the Test, c++ based
res = EBSeqTest(Data,cd,uc,AllParti,iLabel = NgVector,sizefactor = sizeFactors,
iter = maxround,alpha = Alpha, beta = Beta, step1 = step1,step2 = step2,
thre = thre, sthre = sthre, filter = filter, stopthre = stopthre, nequal = nequal)
# DE patterns
parti = res$DEpattern
rownames(parti) = sapply(1:nrow(parti),function(x) paste0("Pattern",x))
colnames(parti) = levels(Conditions)
# renames
colnames(res$Posterior) = sapply(1:ncol(res$Posterior) ,function(i) paste0("pattern",i))
rownames(res$Posterior) = rownames(DataNorm[NotAllZeroNames,])
# Result
Result=list(Alpha=res$Alpha,Beta=res$Beta,P=res$prop,
RList=res$r, MeanList=MeanList,
VarList=VarList, QList = res$q,
Mean = res$mean,Var = res$var, PoolVar=res$poolVar,
DataNorm=DataNorm,Iso = as.numeric(NgVector),
AllZeroIndex=AllZeroNames,PPMat=res$Posterior,AllParti = parti,
Conditions=Conditions, NumUC = res$nuc)
}else{
# regular (old) EBSeq
Pool = F
tau=CI=CIthre=NULL
ApproxVal = 10^-10
Dataraw = Data
# size factor and isoform vector
if(is.null(NgVector))NgVector=rep(1,nrow(Data))
if(length(sizeFactors)!=ncol(Data))sizeFactors=sizeFactors[NotAllZeroNames,]
#ReNameThem
IsoNamesIn=rownames(Data)
Names=paste("I",c(1:dim(Data)[1]),sep="")
names(IsoNamesIn)=Names
rownames(Data)=paste("I",c(1:dim(Data)[1]),sep="")
names(NgVector)=paste("I",c(1:dim(Data)[1]),sep="")
# If PossibleCond==NULL, use all combinations
NumCond=nlevels(Conditions)
CondLevels=levels(Conditions)
#library(blockmodeling)
if(is.null(AllParti)){
AllPartiList=sapply(1:NumCond,function(i)nkpartitions(NumCond,i))
AllParti=do.call(rbind,AllPartiList)
colnames(AllParti)=CondLevels
rownames(AllParti)=paste("Pattern",1:nrow(AllParti),sep="")
}
if(length(sizeFactors)==length(Data)){
rownames(sizeFactors)=rownames(Data)
colnames(sizeFactors)=Conditions
}
NoneZeroLength=nlevels(as.factor(NgVector))
NameList=sapply(1:NoneZeroLength,function(i)names(NgVector)[NgVector==i],simplify=F)
DataList=sapply(1:NoneZeroLength , function(i) Data[NameList[[i]],],simplify=F)
names(DataList)=names(NameList)
NumEachGroup=sapply(1:NoneZeroLength , function(i)dim(DataList)[i])
# Unlist
DataList.unlist=do.call(rbind, DataList)
# Divide by SampleSize factor
if(length(sizeFactors)==ncol(Data))
DataList.unlist.dvd=t(t( DataList.unlist)/sizeFactors)
if(length(sizeFactors)==length(Data))
DataList.unlist.dvd=DataList.unlist/sizeFactors
# Pool or Not
if(Pool==T){
DataforPoolSP.dvd=MeanforPoolSP.dvd=vector("list",NumCond)
for(lv in 1:NumCond){
DataforPoolSP.dvd[[lv]]=matrix(DataList.unlist.dvd[,Conditions==levels(Conditions)[lv]],nrow=dim(DataList.unlist)[1])
MeanforPoolSP.dvd[[lv]]=rowMeans(DataforPoolSP.dvd[[lv]])
}
MeanforPool.dvd=rowMeans(DataList.unlist.dvd)
NumInBin=floor(dim(DataList.unlist)[1]/NumBin)
StartSeq=c(0:(NumBin-1))*NumInBin+1
EndSeq=c(StartSeq[-1]-1,dim(DataList.unlist)[1])
MeanforPool.dvd.Sort=sort(MeanforPool.dvd,decreasing=T)
MeanforPool.dvd.Order=order(MeanforPool.dvd,decreasing=T)
PoolGroups=sapply(1:NumBin,function(i)(names(MeanforPool.dvd.Sort)[StartSeq[i]:EndSeq[i]]),simplify=F)
#FCforPool=MeanforPoolSP.dvd1/MeanforPoolSP.dvd2
# Use GeoMean of every two-group partition
Parti2=nkpartitions(NumCond,2)
FCForPoolList=sapply(1:nrow(Parti2),function(i)rowMeans(do.call(cbind,
MeanforPoolSP.dvd[Parti2[i,]==1]))/
rowMeans(do.call(cbind,MeanforPoolSP.dvd[Parti2[i,]==2])),
simplify=F)
FCForPoolMat=do.call(cbind,FCForPoolList)
FCforPool=apply(FCForPoolMat,1,function(i)exp(mean(log(i))))
names(FCforPool)=names(MeanforPool.dvd)
FC_Use=names(FCforPool)[which(FCforPool>=quantile(FCforPool[!is.na(FCforPool)],PoolLower) & FCforPool<=quantile(FCforPool[!is.na(FCforPool)],PoolUpper))]
PoolGroupVar=sapply(1:NumBin,function(i)(mean(apply(matrix(DataList.unlist[PoolGroups[[i]][PoolGroups[[i]]%in%FC_Use],],ncol=ncol(DataList.unlist)),1,var))))
PoolGroupVarInList=sapply(1:NumBin,function(i)(rep(PoolGroupVar[i],length(PoolGroups[[i]]))),simplify=F)
PoolGroupVarVector=unlist(PoolGroupVarInList)
VarPool=PoolGroupVarVector[MeanforPool.dvd.Order]
names(VarPool)=names(MeanforPool.dvd)
}
DataListSP=vector("list",nlevels(Conditions))
DataListSP.dvd=vector("list",nlevels(Conditions))
SizeFSP=DataListSP
MeanSP=DataListSP
VarSP=DataListSP
GetPSP=DataListSP
RSP=DataListSP
CISP=DataListSP
tauSP=DataListSP
NumEachCondLevel=summary(Conditions)
if(Pool==F & is.null(CI)) CondLevelsUse=CondLevels[NumEachCondLevel>1]
if(Pool==T | !is.null(CI)) CondLevelsUse=CondLevels
NumCondUse=length(CondLevelsUse)
for (lv in 1:nlevels(Conditions)){
DataListSP[[lv]]= matrix(DataList.unlist[,Conditions==levels(Conditions)[lv]],nrow=dim(DataList.unlist)[1])
rownames(DataListSP[[lv]])=rownames(DataList.unlist)
DataListSP.dvd[[lv]]= matrix(DataList.unlist.dvd[,Conditions==levels(Conditions)[lv]],nrow=dim(DataList.unlist.dvd)[1])
if(ncol(DataListSP[[lv]])==1 & Pool==F & !is.null(CI)){
CISP[[lv]]=matrix(CI[,Conditions==levels(Conditions)[lv]],nrow=dim(DataList.unlist.dvd)[1])
tauSP[[lv]]=matrix(tau[,Conditions==levels(Conditions)[lv]],nrow=dim(DataList.unlist.dvd)[1])
}
# no matter sizeFactors is a vector or a matrix. Matrix should be columns are the normalization factors
# may input one for each
if(length(sizeFactors)==ncol(Data))SizeFSP[[lv]]=sizeFactors[Conditions==levels(Conditions)[lv]]
if(length(sizeFactors)==length(Data))SizeFSP[[lv]]=sizeFactors[,Conditions==levels(Conditions)[lv]]
MeanSP[[lv]]=rowMeans(DataListSP.dvd[[lv]])
names(MeanSP[[lv]])=rownames(DataListSP[[lv]])
if(length(sizeFactors)==ncol(Data))PrePareVar=sapply(1:ncol( DataListSP[[lv]]),function(i)( DataListSP[[lv]][,i]- SizeFSP[[lv]][i]*MeanSP[[lv]])^2 /SizeFSP[[lv]][i])
if(length(sizeFactors)==length(Data))PrePareVar=sapply(1:ncol( DataListSP[[lv]]),function(i)( DataListSP[[lv]][,i]- SizeFSP[[lv]][,i]*MeanSP[[lv]])^2 /SizeFSP[[lv]][,i])
if(ncol(DataListSP[[lv]])==1 & Pool==F & !is.null(CI))
VarSP[[lv]]=as.vector(((DataListSP[[lv]]/tauSP[[lv]]) * CISP[[lv]]/(CIthre*2))^2)
if( Pool==T){
VarSP[[lv]]=VarPool
}
if(ncol(DataListSP[[lv]])!=1){
VarSP[[lv]]=rowSums(PrePareVar)/ncol( DataListSP[[lv]])
names(VarSP[[lv]])=rownames(DataList.unlist)
GetPSP[[lv]]=MeanSP[[lv]]/VarSP[[lv]]
RSP[[lv]]=MeanSP[[lv]]*GetPSP[[lv]]/(1-GetPSP[[lv]])
}
names(MeanSP[[lv]])=rownames(DataList.unlist)
}
# Get Empirical R
# POOL R???
MeanList=rowMeans(DataList.unlist.dvd)
VarList=apply(DataList.unlist.dvd, 1, var)
if(NumCondUse!=0){
Varcbind=do.call(cbind,VarSP[CondLevels%in%CondLevelsUse])
PoolVarSpeedUp_MDFPoi_NoNormVarList=rowMeans(Varcbind)
VarrowMin=apply(Varcbind,1,min)
}
if(NumCondUse==0)
{
NumFCgp=choose(NumCond,2)
FC_Use_tmp=vector("list",NumFCgp)
aa=1
for(k1 in 1:(NumCond-1)){
for(k2 in (k1+1):NumCond){
FCforPool=DataList.unlist.dvd[,k1]/DataList.unlist.dvd[,k2]
names(FCforPool)=rownames(DataList.unlist.dvd)
FC_Use_tmp[[aa]]=names(FCforPool)[which(FCforPool>=quantile(FCforPool[!is.na(FCforPool)],.25) &
FCforPool<=quantile(FCforPool[!is.na(FCforPool)],.75))]
aa=aa+1
}}
FC_Use=Reduce(intersect,FC_Use_tmp)
if(length(FC_Use)==0){
All_candi=unlist(FC_Use_tmp)
FC_Use=names(table(All_candi))[1:3]
}
Var_FC_Use=apply( DataList.unlist.dvd[FC_Use,],1,var )
MeanforPool=apply( DataList.unlist.dvd,1,mean )
Mean_FC_Use=apply( DataList.unlist.dvd[FC_Use,],1,mean )
FC_Use2=which(Var_FC_Use>=Mean_FC_Use)
Var_FC_Use2=Var_FC_Use[FC_Use2]
Mean_FC_Use2=Mean_FC_Use[FC_Use2]
Phi=mean((Var_FC_Use2-Mean_FC_Use2)/Mean_FC_Use2^2)
VarEst= MeanforPool*(1+MeanforPool*Phi)
if(Print==T)message(paste("No Replicate - estimate phi",round(Phi,5), "\n"))
Varcbind=VarEst
PoolVarSpeedUp_MDFPoi_NoNormVarList=VarEst
VarrowMin=VarEst
}
GetP=MeanList/PoolVarSpeedUp_MDFPoi_NoNormVarList
EmpiricalRList=MeanList*GetP/(1-GetP)
# sep
#Rcb=cbind(RSP[[1]],RSP[[2]])
#Rbest=apply(Rcb,1,function(i)max(i[!is.na(i) & i!=Inf]))
EmpiricalRList[EmpiricalRList==Inf] =max(EmpiricalRList[EmpiricalRList!=Inf])
# fine
#
GoodData=names(MeanList)[EmpiricalRList>0 & VarrowMin!=0 & EmpiricalRList!=Inf & !is.na(VarrowMin) & !is.na(EmpiricalRList)]
NotIn=names(MeanList)[EmpiricalRList<=0 | VarrowMin==0 | EmpiricalRList==Inf | is.na(VarrowMin) | is.na(EmpiricalRList)]
#NotIn.BestR=Rbest[NotIn.raw]
#NotIn.fix=NotIn.BestR[which(NotIn.BestR>0)]
#EmpiricalRList[names(NotIn.fix)]=NotIn.fix
#print(paste("ZeroVar",sum(VarrowMin==0), "InfR", length(which(EmpiricalRList==Inf)), "Poi", length(which(EmpiricalRList<0)), ""))
#GoodData=c(GoodData.raw,names(NotIn.fix))
#NotIn=NotIn.raw[!NotIn.raw%in%names(NotIn.fix)]
EmpiricalRList.NotIn=EmpiricalRList[NotIn]
EmpiricalRList.Good=EmpiricalRList[GoodData]
EmpiricalRList.Good[EmpiricalRList.Good<1]=1+EmpiricalRList.Good[EmpiricalRList.Good<1]
if(length(sizeFactors)==ncol(Data))
EmpiricalRList.Good.mat= outer(EmpiricalRList.Good, sizeFactors)
if(length(sizeFactors)==length(Data))
EmpiricalRList.Good.mat=EmpiricalRList.Good* sizeFactors[GoodData,]
# Only Use Data has Good q's
DataList.In=sapply(1:NoneZeroLength, function(i)DataList[[i]][GoodData[GoodData%in%rownames(DataList[[i]])],],simplify=F)
DataList.NotIn=sapply(1:NoneZeroLength, function(i)DataList[[i]][NotIn[NotIn%in%rownames(DataList[[i]])],],simplify=F)
DataListIn.unlist=do.call(rbind, DataList.In)
DataListNotIn.unlist=do.call(rbind, DataList.NotIn)
DataListSPIn=vector("list",nlevels(Conditions))
DataListSPNotIn=vector("list",nlevels(Conditions))
EmpiricalRList.Good.mat.SP=vector("list",nlevels(Conditions))
for (lv in 1:nlevels(Conditions)){
DataListSPIn[[lv]]= matrix(DataListIn.unlist[,Conditions==levels(Conditions)[lv]],nrow=dim(DataListIn.unlist)[1])
if(length(NotIn)>0) DataListSPNotIn[[lv]]= matrix(DataListNotIn.unlist[,Conditions==levels(Conditions)[lv]],nrow=dim(DataListNotIn.unlist)[1])
rownames(DataListSPIn[[lv]])=rownames(DataListIn.unlist)
if(length(NotIn)>0)rownames(DataListSPNotIn[[lv]])=rownames(DataListNotIn.unlist)
EmpiricalRList.Good.mat.SP[[lv]]=matrix(EmpiricalRList.Good.mat[,Conditions==levels(Conditions)[lv]],nrow=dim(EmpiricalRList.Good.mat)[1])
}
NumOfEachGroupIn=sapply(1:NoneZeroLength, function(i)max(0,dim(DataList.In[[i]])[1]))
NumOfEachGroupNotIn=sapply(1:NoneZeroLength, function(i)max(0,dim(DataList.NotIn[[i]])[1]))
#Initialize SigIn & ...
AlphaIn=0.5
BetaIn=rep(0.5,NoneZeroLength)
PIn=rep(1/nrow(AllParti),nrow(AllParti))
####use while to make an infinity round?
UpdateAlpha=NULL
UpdateBeta=NULL
UpdateP=NULL
UpdatePFromZ=NULL
Timeperround=NULL
for (times in 1:maxround){
temptime1=proc.time()
UpdateOutput=suppressWarnings(LogNMulti(DataListIn.unlist,DataListSPIn, EmpiricalRList.Good.mat ,EmpiricalRList.Good.mat.SP,
NumOfEachGroupIn, AlphaIn, BetaIn, PIn, NoneZeroLength, AllParti,Conditions))
message(paste("iteration", times, "done \n",sep=" "))
AlphaIn=UpdateOutput$AlphaNew
BetaIn=UpdateOutput$BetaNew
PIn=UpdateOutput$PNew
PFromZ=UpdateOutput$PFromZ
FOut=UpdateOutput$FGood
UpdateAlpha=rbind(UpdateAlpha,AlphaIn)
UpdateBeta=rbind(UpdateBeta,BetaIn)
UpdateP=rbind(UpdateP,PIn)
UpdatePFromZ=rbind(UpdatePFromZ,PFromZ)
temptime2=proc.time()
Timeperround=c(Timeperround,temptime2[3]-temptime1[3])
message(paste("time" ,round(Timeperround[times],2),"\n",sep=" "))
Z.output=UpdateOutput$ZEachGood
Z.NA.Names=UpdateOutput$zNaNName
}
#Remove this } after testing!!
# if (times!=1){
# if((UpdateAlpha[times]-UpdateAlpha[times-1])^2+UpdateBeta[times]-UpdateBeta[times-1])^2+UpdateR[times]-UpdateR[times-1])^2+UpdateP[times]-UpdateP[times-1])^2<=10^(-6)){
# Result=list(Sig=SigIn, Miu=MiuIn, Tau=TauIn)
# break
# }
# }
#}
##########Change Names############
## Only z are for Good Ones
## Others are for ALL Data
GoodData=GoodData[!GoodData%in%Z.NA.Names]
IsoNamesIn.Good=as.vector(IsoNamesIn[GoodData])
RealName.Z.output=Z.output
RealName.F=FOut
rownames(RealName.Z.output)=IsoNamesIn.Good
rownames(RealName.F)=IsoNamesIn.Good
RealName.EmpiricalRList=sapply(1:NoneZeroLength,function(i)EmpiricalRList[names(EmpiricalRList)%in%NameList[[i]]], simplify=F)
RealName.MeanList=sapply(1:NoneZeroLength,function(i)MeanList[names(MeanList)%in%NameList[[i]]], simplify=F)
RealName.SPMeanList=sapply(1:NoneZeroLength,function(i)sapply(1:length(MeanSP), function(j)MeanSP[[j]][names(MeanSP[[j]])%in%NameList[[i]]],simplify=F), simplify=F)
RealName.SPVarList=sapply(1:NoneZeroLength,function(i)sapply(1:length(VarSP), function(j)VarSP[[j]][names(VarSP[[j]])%in%NameList[[i]]],simplify=F), simplify=F)
RealName.DataList=sapply(1:NoneZeroLength,function(i)DataList[[i]][rownames(DataList[[i]])%in%NameList[[i]],], simplify=F)
RealName.VarList=sapply(1:NoneZeroLength,function(i)VarList[names(VarList)%in%NameList[[i]]], simplify=F)
RealName.PoolVarList=sapply(1:NoneZeroLength,function(i)PoolVarSpeedUp_MDFPoi_NoNormVarList[names(PoolVarSpeedUp_MDFPoi_NoNormVarList)%in%NameList[[i]]], simplify=F)
RealName.QList=sapply(1:NoneZeroLength,function(i)sapply(1:length(GetPSP), function(j)GetPSP[[j]][names(GetPSP[[j]])%in%NameList[[i]]],simplify=F), simplify=F)
for (i in 1:NoneZeroLength){
tmp=NameList[[i]]
Names=IsoNamesIn[tmp]
RealName.MeanList[[i]]=RealName.MeanList[[i]][NameList[[i]]]
RealName.VarList[[i]]=RealName.VarList[[i]][NameList[[i]]]
for(j in 1:NumCond){
RealName.SPMeanList[[i]][[j]]=RealName.SPMeanList[[i]][[j]][NameList[[i]]]
if(!is.null(RealName.QList[[i]][[j]])){
RealName.QList[[i]][[j]]=RealName.QList[[i]][[j]][NameList[[i]]]
RealName.SPVarList[[i]][[j]]=RealName.SPVarList[[i]][[j]][NameList[[i]]]
names(RealName.QList[[i]][[j]])=Names
names(RealName.SPVarList[[i]][[j]])=Names
}
names(RealName.SPMeanList[[i]][[j]])=Names
}
RealName.EmpiricalRList[[i]]=RealName.EmpiricalRList[[i]][NameList[[i]]]
RealName.PoolVarList[[i]]=RealName.PoolVarList[[i]][NameList[[i]]]
RealName.DataList[[i]]=RealName.DataList[[i]][NameList[[i]],]
names(RealName.MeanList[[i]])=Names
names(RealName.VarList[[i]])=Names
names(RealName.EmpiricalRList[[i]])=Names
names(RealName.PoolVarList[[i]])=Names
rownames(RealName.DataList[[i]])=Names
}
#########posterior part for other data set here later############
AllNA=unique(c(Z.NA.Names,NotIn))
AllZ=NULL
AllF=NULL
if(length(AllNA)==0){
AllZ=RealName.Z.output[IsoNamesIn,]
AllF=RealName.F[IsoNamesIn,]
}
ZEachNA=NULL
if (length(AllNA)>0){
Ng.NA=NgVector[AllNA]
AllNA.Ngorder=AllNA[order(Ng.NA)]
NumOfEachGroupNA=rep(0,NoneZeroLength)
NumOfEachGroupNA.tmp=tapply(Ng.NA,Ng.NA,length)
names(NumOfEachGroupNA)=c(1:NoneZeroLength)
NumOfEachGroupNA[names(NumOfEachGroupNA.tmp)]=NumOfEachGroupNA.tmp
PNotIn=rep(1-ApproxVal,length(AllNA.Ngorder))
MeanList.NotIn=MeanList[AllNA.Ngorder]
R.NotIn.raw=MeanList.NotIn*PNotIn/(1-PNotIn)
if(length(sizeFactors)==ncol(Data))
R.NotIn=matrix(outer(R.NotIn.raw,sizeFactors),nrow=length(AllNA.Ngorder))
if(length(sizeFactors)==length(Data))
R.NotIn=matrix(R.NotIn.raw*sizeFactors[names(R.NotIn.raw),],nrow=length(AllNA.Ngorder))
DataListNotIn.unlistWithZ=matrix(DataList.unlist[AllNA.Ngorder,],
nrow=length(AllNA.Ngorder))
rownames(DataListNotIn.unlistWithZ)=AllNA.Ngorder
DataListSPNotInWithZ=vector("list",nlevels(Conditions))
RListSPNotInWithZ=vector("list",nlevels(Conditions))
for (lv in 1:nlevels(Conditions)) {
DataListSPNotInWithZ[[lv]] = matrix(DataListSP[[lv]][AllNA.Ngorder,],nrow=length(AllNA.Ngorder))
RListSPNotInWithZ[[lv]]=matrix(R.NotIn[,Conditions==levels(Conditions)[lv]],nrow=length(AllNA.Ngorder))
}
FListNA=sapply(1:nrow(AllParti),function(i)sapply(1:nlevels(as.factor(AllParti[i,])),
function(j)f0(do.call(cbind, DataListSPNotInWithZ[AllParti[i,]==j]),AlphaIn, BetaIn,
do.call(cbind,RListSPNotInWithZ[AllParti[i,]==j]), NumOfEachGroupNA, log=T)),
simplify=F)
for(ii in 1:length(FListNA))
FListNA[[ii]]=matrix(FListNA[[ii]],nrow=length(AllNA.Ngorder))
FPartiLogNA=matrix(sapply(FListNA,rowSums),nrow=length(AllNA.Ngorder))
FMatNA=exp(FPartiLogNA+600)
rownames(FMatNA)=rownames(DataListNotIn.unlistWithZ)
PMatNA=matrix(rep(1,nrow(DataListNotIn.unlistWithZ)),ncol=1)%*%matrix(PIn,nrow=1)
FmultiPNA=matrix(FMatNA*PMatNA,nrow=length(AllNA.Ngorder))
DenomNA=rowSums(FmultiPNA)
ZEachNA=matrix(apply(FmultiPNA,2,function(i)i/DenomNA),nrow=length(AllNA.Ngorder))
rownames(ZEachNA)=IsoNamesIn[AllNA.Ngorder]
AllZ=rbind(RealName.Z.output,ZEachNA)
AllZ=AllZ[IsoNamesIn,]
F.NotIn=FPartiLogNA
rownames(F.NotIn)=IsoNamesIn[rownames(FMatNA)]
AllF=rbind(RealName.F,F.NotIn)
AllF=AllF[IsoNamesIn,]
}
colnames(AllZ)=rownames(AllParti)
colnames(AllF)=rownames(AllParti)
rownames(UpdateAlpha)=paste("iter",1:nrow(UpdateAlpha),sep="")
rownames(UpdateBeta)=paste("iter",1:nrow(UpdateBeta),sep="")
rownames(UpdateP)=paste("iter",1:nrow(UpdateP),sep="")
rownames(UpdatePFromZ)=paste("iter",1:nrow(UpdatePFromZ),sep="")
colnames(UpdateBeta)=paste("Ng",1:ncol(UpdateBeta),sep="")
CondOut=levels(Conditions)
names(CondOut)=paste("Condition",c(1:length(CondOut)),sep="")
AllZWith0=matrix(NA,ncol=ncol(AllZ),nrow=nrow(Dataraw))
rownames(AllZWith0)=rownames(Dataraw)
colnames(AllZWith0)=colnames(AllZ)
if(is.null(AllZeroNames))AllZWith0=AllZ
if(!is.null(AllZeroNames))AllZWith0[names(NotAllZeroNames),]=AllZ[names(NotAllZeroNames),]
#############Result############################
Result=list(Alpha=UpdateAlpha,Beta=UpdateBeta,P=UpdateP, RList=RealName.EmpiricalRList
, MeanList=RealName.MeanList
,VarList=RealName.VarList
, QList=RealName.QList
,Mean=unlist(RealName.SPMeanList)
,Var=RealName.SPVarList
,PoolVar=RealName.PoolVarList
,DataNorm = DataNorm
,Iso = as.numeric(NgVector)
,AllZeoIndex =AllZeroNames
,PPMat=AllZ
, AllParti=AllParti
, Conditions=CondOut
,NumUC = NA)
}
return(Result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.