#' @title Parametric Bootstrap Mean Squared Error Estimators of Optimum Benchmarking for Univariate Small Area Estimation
#'
#' @description Calculates the parametric bootstrap mean squared error estimates of optimum benchmarking for univariate small area estimation
#'
#' @param formula an object of class list of formula describe the fitted model
#' @param vardir vector containing sampling variances of direct estimators
#' @param weight vector containing proportion of units in small areas
#' @param samevar logical. If \code{TRUE}, the varians is same. Default is \code{FALSE}
#' @param B number of bootstrap. Default is 1000
#' @param MAXITER maximum number of iterations for Fisher-scoring. Default is 100
#' @param PRECISION coverage tolerance limit for the Fisher Scoring algorithm. Default value is \code{1e-4}
#' @param data dataframe containing the variables named in formula, vardir, and weight
#'
#' @return
#' \item{mse.eblup}{estimated mean squared errors of the EBLUPs for the small domains based on Prasad Rao}
#' \item{pbmse.eblupOB}{parametric bootstrap mean squared error estimates of the optimum benchmark}
#' \item{running.time}{time for running function}
#'
#' @export mse_saeOB
#'
#' @import abind
#' @importFrom magic adiag
#' @importFrom Matrix forceSymmetric
#' @importFrom stats model.frame na.omit model.matrix median pnorm rnorm
#' @importFrom MASS mvrnorm
#'
#' @examples
#' \donttest{
#' ## load dataset
#' data(datamsaeOB)
#'
#' # Compute MSE EBLUP and Optimum Benchmark
#'
#' ## Using parameter 'data'
#' mse_sae = mse_saeOB(Y1 ~ X1 + X2, v1, w1, data = datamsaeOB)
#'
#' ## Without parameter 'data'
#' mse_sae = mse_saeOB(datamsaeOB$Y1 ~ datamsaeOB$X1 + datamsaeOB$X2, datamsaeOB$v1, datamsaeOB$w1)
#'
#' ## Return
#' mse_sae$pbmse.eblupOB # to see the MSE Optimum Benchmark estimators
#' }
mse_saeOB<-function (formula, vardir, weight, samevar = FALSE, B = 100,
MAXITER = 100, PRECISION = 1e-04, data)
{
start_time <- Sys.time()
if (!is.list(formula))
formula = list(formula)
r = length(formula)
if (r > 1)
stop("You should use mse_msaeOB() for multivariate")
R_function = function(vardir, n, r) {
if (r == 1) {
R = diag(vardir)
}
else {
R = matrix(rep(0, times = n * r * n * r), nrow = n *
r, ncol = n * r)
k = 1
for (i in 1:r) {
for (j in 1:r) {
if (i <= j) {
mat0 = matrix(rep(0, times = r * r), nrow = r,
ncol = r)
mat0[i, j] = 1
matVr = diag(vardir[, k], length(vardir[,
k]))
R_hasil = kronecker(mat0, matVr)
R = R + R_hasil
k = k + 1
}
}
}
R = forceSymmetric(R)
}
return(as.matrix(R))
}
eblup_inside = function(r, n, samevar, y, X, R, MAXITER = 100,
PRECISION = 1e-04) {
y_names = sapply(formula, "[[", 2)
Ir = diag(r)
In = diag(n)
dV = list()
dV1 = list()
for (i in 1:r) {
dV[[i]] = matrix(0, nrow = r, ncol = r)
dV[[i]][i, i] = 1
dV1[[i]] = kronecker(dV[[i]], In)
}
convergence = TRUE
if (samevar) {
Vu = median(diag(R))
k = 0
diff = rep(PRECISION + 1, r)
while (any(diff > PRECISION) & (k < MAXITER)) {
k = k + 1
Vu1 = Vu
Gr = kronecker(Vu1, Ir)
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
s = (-0.5) %*% sum(diag(P)) + 0.5 %*% (t(Py) %*%
Py)
iF = 0.5 %*% sum(diag(P %*% P))
Vu = Vu1 + solve(iF) %*% s
diff = abs((Vu - Vu1)/Vu1)
}
Vu = as.vector((rep(max(Vu, 0), r)))
names(Vu) = y_names
if (k >= MAXITER && diff >= PRECISION) {
convergence = FALSE
}
Gn = kronecker(diag(Vu), In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
beta = Q %*% XtVinv %*% y
res = y - X %*% beta
eblup = data.frame(matrix(X %*% beta + Gn %*% Vinv %*%
res, n, r))
names(eblup) = y_names
se.b = sqrt(diag(Q))
t.value = beta/se.b
p.value = 2 * pnorm(abs(as.numeric(t.value)), lower.tail = FALSE)
coef = as.matrix(cbind(beta, se.b, t.value, p.value))
colnames(coef) = c("beta", "std. error",
"t value", "p-value")
rownames(coef) = colnames(X)
g1 = diag(Gn %*% Vinv %*% R)
g2 = diag(R %*% Vinv %*% X %*% Q %*% t(X) %*% t(R %*%
Vinv))
dg = Vinv - Gn %*% Vinv %*% Vinv
gg3 = (dg %*% V %*% t(dg))/iF
g3 = diag(gg3)
mse = g1 + g2 + 2 * g3
mse.df = data.frame(matrix(data = mse, nrow = n,
ncol = r))
names(mse.df) = y_names
}
else {
Vu = apply(matrix(diag(R), nrow = n, ncol = r), 2,
median)
k = 0
diff = rep(PRECISION + 1, r)
while (any(diff > rep(PRECISION, r)) & (k < MAXITER)) {
k = k + 1
Vu1 = Vu
if (r == 1) {
Gr = Vu1
}
else {
Gr = diag(as.vector(Vu1))
}
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
s = sapply(dV1, function(x) (-0.5) * sum(diag(P %*%
x)) + 0.5 * (t(Py) %*% x %*% Py))
iF = matrix(unlist(lapply(dV1, function(x) lapply(dV1,
function(y) 0.5 * sum(diag(P %*% x %*% P %*%
y))))), r)
Vu = Vu1 + solve(iF) %*% s
diff = abs((Vu - Vu1)/Vu1)
}
Vu = as.vector(sapply(Vu, max, 0))
if (k >= MAXITER && diff >= PRECISION) {
convergence = FALSE
}
if (r == 1) {
Gr = Vu1
}
else {
Gr = diag(as.vector(Vu1))
}
Gn = kronecker(Gr, In)
V = as.matrix(Gn + R)
Vinv = solve(V)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
P = Vinv - t(XtVinv) %*% Q %*% XtVinv
Py = P %*% y
beta = Q %*% XtVinv %*% y
res = y - X %*% beta
eblup = data.frame(matrix(X %*% beta + Gn %*% Vinv %*%
res, n, r))
names(eblup) = y_names
se.b = sqrt(diag(Q))
t.value = beta/se.b
p.value = 2 * pnorm(abs(as.numeric(t.value)), lower.tail = FALSE)
coef = as.matrix(cbind(beta, se.b, t.value, p.value))
colnames(coef) = c("beta", "std. error",
"t value", "p-value")
rownames(coef) = colnames(X)
FI = solve(iF)
g1 = diag(Gn %*% Vinv %*% R)
g2 = diag(R %*% Vinv %*% X %*% Q %*% t(X) %*% t(R %*%
Vinv))
dg = lapply(dV1, function(x) x %*% Vinv - Gn %*%
Vinv %*% x %*% Vinv)
gg3 = list()
for (i in 1:r) {
for (j in 1:r) {
gg3[[(i - 1) * r + j]] = FI[i, j] * (dg[[i]] %*%
V %*% t(dg[[j]]))
}
}
g3 = diag(Reduce("+", gg3))
mse = g1 + g2 + 2 * g3
mse.df = data.frame(matrix(data = mse, nrow = n,
ncol = r))
names(mse.df) = y_names
}
result = list(eblup = NA, fit = list(estcoef = NA, refvar = NA),
mse = NA, mse_component = list(g1 = NA, g2 = NA,
g3 = NA))
result$eblup = eblup
result$fit$estcoef = coef
result$fit$refvar = t(Vu)
result$mse = mse.df
result$mse_component$g1 = g1
result$mse_component$g2 = g2
result$mse_component$g3 = g3
return(result)
}
namevar = deparse(substitute(vardir))
nameweight = deparse(substitute(weight))
if (!missing(data)) {
formuladata = lapply(formula, function(x) model.frame(x,
na.action = na.omit, data))
y = unlist(lapply(formula, function(x) model.frame(x,
na.action = na.omit, data)[[1]]))
X = Reduce(adiag, lapply(formula, function(x) model.matrix(x,
data)))
W = as.matrix(data[, nameweight])
n = length(y)/r
if (any(is.na(data[, namevar])))
stop("Object vardir contains NA values.")
if (any(is.na(data[, nameweight])))
stop("Object weight contains NA values.")
R = R_function(data[, namevar], n, r)
vardir = data[, namevar]
samevar = samevar
}
else {
formuladata = lapply(formula, function(x) model.frame(x,
na.action = na.omit))
y = unlist(lapply(formula, function(x) model.frame(x,
na.action = na.omit)[[1]]))
X = Reduce(adiag, lapply(formula, function(x) model.matrix(x)))
W = as.matrix(weight)
n = length(y)/r
if (any(is.na(vardir)))
stop("Object vardir contains NA values")
if (any(is.na(weight)))
stop("Object weight contains NA values.")
R = R_function(vardir, n, r)
samevar = samevar
}
y_names = sapply(formula, "[[", 2)
eblup_first = eblup_inside(r = r, n = n, samevar = samevar,
y = y, X = X, R = R)
beta = eblup_first$fit$estcoef[, 1]
A = eblup_first$fit$refvar
A_mat = kronecker(A, diag(n))
Vinv = solve(kronecker(A, diag(n)) + R)
XtVinv = t(Vinv %*% X)
Q = solve(XtVinv %*% X)
mse_prasad = eblup_first$mse
g1d = eblup_first$mse_component$g1
g2d = eblup_first$mse_component$g2
sumg1.pb = rep(0, n * r)
sumg2.pb = rep(0, n * r)
sumg3.pb = rep(0, n * r)
boot <- 1
while (boot <= B) {
u.boot = rnorm(n, 0, sqrt(A))
theta.boot = X %*% beta + u.boot
e.boot = rnorm(n, 0, sqrt(as.vector(vardir)))
direct.boot = theta.boot + e.boot
direct.boot.mat = matrix(direct.boot, nrow = n, ncol = r)
resultEBLUP = eblup_inside(r = r, n = n, samevar = samevar,
y = direct.boot, X = X, R = R)
sigma2.simula = resultEBLUP$fit$refvar
beta.simula = resultEBLUP$fit$estcoef[, 1]
mse.simula = resultEBLUP$mse
Gn.simula = kronecker(as.vector(sigma2.simula), diag(n))
Vinv.simula = as.matrix(solve(Gn.simula + R))
Xbeta.simula = X %*% beta.simula
XtVi.simula = t(Vinv.simula %*% X)
Q.simula = solve(XtVi.simula %*% X)
thetaEBLUP.boot1 = Xbeta.simula + Gn.simula %*% Vinv.simula %*%
(direct.boot - Xbeta.simula)
thetaEBLUP.boot1.mat = as.matrix(thetaEBLUP.boot1)
thetaALFA.boot1 = colSums(W * direct.boot.mat) - colSums(W * thetaEBLUP.boot1.mat)
thetaLAMBDA.boot1 = (mse.simula * W) / colSums(mse.simula * W^2)
thetaOPTIMUM.boot1 = thetaEBLUP.boot1.mat + (thetaLAMBDA.boot1 * thetaALFA.boot1)
Bstim.eblup = solve(XtVinv %*% X) %*% XtVinv %*% direct.boot
Xbeta.eblup = X %*% Bstim.eblup
thetaEBLUP.boot2 = Xbeta.eblup + A_mat %*% Vinv %*% (direct.boot -
Xbeta.eblup)
thetaEBLUP.boot2.mat = as.matrix(thetaEBLUP.boot2)
thetaALFA.boot2 = colSums(W * direct.boot.mat) - colSums(W * thetaEBLUP.boot2.mat)
thetaLAMBDA.boot2 = (mse.simula * W) / colSums(mse.simula * W^2)
thetaOPTIMUM.boot2 = thetaEBLUP.boot2.mat + (thetaLAMBDA.boot2 * thetaALFA.boot2)
g1boot = diag(Gn.simula %*% Vinv.simula %*% R)
g2boot = diag(R %*% Vinv.simula %*% X %*% Q.simula %*%
t(X) %*% t(R %*% Vinv.simula))
g3boot = (thetaOPTIMUM.boot1 - thetaOPTIMUM.boot2)^2
sumg1.pb = sumg1.pb + g1boot
sumg2.pb = sumg2.pb + g2boot
sumg3.pb = sumg3.pb + g3boot
boot = boot + 1
}
g1.pb = sumg1.pb/B
g2.pb = sumg2.pb/B
g3.pb = sumg3.pb/B
msebootoptimum = 2 * (g1d + g2d) - g1.pb - g2.pb + g3.pb
end_time <- Sys.time()
running_time = end_time - start_time
result1 = list(mse.eblup = NA, pbmse.eblupOB = NA, running.time = NA)
result1$mse.eblup = mse_prasad
result1$pbmse.eblupOB = msebootoptimum
result1$running.time = running_time
return(result1)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.