#' Print method for a fitted \code{glmcat} model object
#' @description \code{print} method for a fitted \code{glmcat} model object.
#' @param x an object of class \code{glmcat}.
#' @param ... additional arguments.
#' @rdname print
#' @examples
#' model <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
#' ref_category = "Very.severe", ratio = "cumulative")
#' print(model)
#' @exportS3Method
print.glmcat <- function(x, ...) {
cat("\nFormula:\n")
print(x$formula)
print(x$table_summary)
cat("\nCoefficients:\n")
print(coef(x, with_baseline = FALSE))
ll <- logLik(x)
cat("\nLog-Likelihood:\n ", ll, " (df = ", attr(ll, "df"), ")", sep = "")
cat("\n\n")
invisible(x)
}
#' Plot method for a fitted \code{glmcat} model object
#' @description \code{plot} of the log-likelihood profile for a fitted \code{glmcat} model object.
#' @param x an object of class \code{glmcat}.
#' @param ... additional arguments.
#' @rdname plot
#' @exportS3Method
plot.glmcat <- function(x, ...) {
log_iter <- x$LogLikIter
plot(log_iter[-1],main = "Log-likelihood profile", xlab = "Iteration", ylab = "Log-likelihood")
lines(log_iter[-1])
}
#' Variance-Covariance Matrix for a fitted \code{glmcat} model object
#' @description Returns the variance-covariance matrix of the main parameters of a fitted \code{glmcat} model object.
#' @param object an object of class \code{glmcat}.
#' @param ... additional arguments.
#' @rdname vcov
#' @method vcov glmcat
#' @usage \method{vcov}{glmcat}(object,...)
#' @exportS3Method
vcov.glmcat <- function(object,...) {
colnames(object$cov_beta) <- rownames(object$cov_beta) <- rownames(object$coefficients)
return(object$cov_beta)
}
#' Terms of a fitted \code{glmcat} model object
#' @description Returns the terms of a fitted \code{glmcat} model object.
#' @param x an object of class \code{glmcat}.
#' @param ... additional arguments.
#' @rdname terms
#' @method terms glmcat
#' @usage \method{terms}{glmcat}(x, ...)
#' @exportS3Method
terms.glmcat <- function(x,...) {
return(terms(x$formula))
}
#' Predict method for a a fitted \code{glmcat} model object
#' @description Obtains predictions of a fitted \code{glmcat} model object.
#' @param object a fitted object of class \code{glmcat}.
#' @param newdata optionally, a data frame in which to look for the variables involved in the model. If omitted, the fitted linear predictors are used.
# #' @param se.fit should standard errors of the predictions be provided? Not applicable and ignored when \code{type = "class"}.
# #' @param interval should confidence intervals for the predictions be provided? Not applicable and ignored when \code{type = "class"}.
# #' @param level the confidence level.
#' @param type the type of prediction required.
#' The default is \code{"prob"} which gives the probabilities, the other option is
#' \code{"linear.predictor"} which gives predictions on the scale of the linear predictor.
# #' @param na.action function determining what should be done with missing values in \code{newdata}. The default is to predict \code{NA}.
#' @param ... further arguments.
#' The default is \code{"prob"} which gives the probabilities, the other option is
#' \code{"linear.predictor"} which gives predictions on the scale of the linear predictor.
#' @rdname predict
#' @method predict glmcat
#' @usage \method{predict}{glmcat}(object, newdata, type, ...)
#' @exportS3Method
predict.glmcat <- function(object,
newdata,
# se.fit = FALSE,
# interval = FALSE,
# level = 0.95,
type = c("prob", "linear.predictor"),
# na.action = na.pass,
...){
if (missing(type)) { type <- "prob" }
type <- match.arg(type, c("prob", "linear.predictor"))
if (missing(newdata)) {
# if (object$Function == "DiscreteCM"){
# object1 <- object
# formula1 <- paste(format(object1$formula),"+",object1$arguments$case_id,"+",
# object1$arguments$alternatives,sep = "")
# object1$formula <- formula1
# newdata <- model.frame(object1)
# print(object1$formula)
#
# }else{
newdata <- model.frame(object)
# }
}
newdata[with(attributes(terms(object)), as.character(variables[response+1]))] <- object$categories_order[1]
return(.predict_glmcat(model_object = object, data = newdata, type = type))
}
#' Confidence intervals for parameters of a fitted \code{glmcat} model object
#' @description Computes confidence intervals from a fitted \code{glmcat} model object for all the parameters.
#' @param object an fitted object of class \code{glmcat}.
#' @param parm a numeric or character vector indicating which regression coefficients should be displayed
#' @param level the confidence level.
#' @param ... other parameters.
#' @rdname confint.glmcat
#' @method confint glmcat
#' @usage \method{confint}{glmcat}(object, parm, level, ...)
#' @exportS3Method
confint.glmcat <-
function(object, parm = NULL, level = 0.95, ...)
{
stopifnot(is.numeric(level) && length(level) == 1 && level > 0 && level < 1)
lev <- (1 - level)/2
lev <- c(lev, 1 - lev)
pct <- paste(format(100 * lev, trim = TRUE, scientific = FALSE, digits = 3), "%")
fac <- qnorm(lev)
coefs <- coef(object)
parnames <- rownames(coefs)
if(is.character(parm))
parm <- match(parm, parnames, nomatch = 0)
if(is.null(parm)){
parm = seq_len(length(coefs))
}
if(!all(parm %in% seq_len(length(coefs))))
stop("invalid 'parm' argument")
stopifnot(length(parm) > 0)
ses <- coef(summary(object))[, 2]
ci <- array(NA, dim = c(length(coefs), 2L), dimnames = list(names(coefs), pct))
ci[] <- cbind(coefs,coefs) + ses %o% fac
rownames(ci) <- rownames(coefs)
ci <- ci[parm,]
return(ci)
}
#' Summary method for a fitted \code{glmcat} model object
#' @description Summary method for a fitted `glmcat` model object.
#' @param object an fitted object of class `glmcat`.
#' @param normalized if `TRUE`, the summary method yields the normalized coefficients.
#' @param correlation if `TRUE`, prints the correlation matrix.
#' @param ... additional arguments affecting the summary produced.
#' @rdname summary
#' @method summary glmcat
#' @exportS3Method
#' @examples
#' mod1 <- discrete_cm(formula = choice ~ hinc + gc + invt,
#' case_id = "indv", alternatives = "mode", reference = "air",
#' data = TravelChoice, alternative_specific = c("gc", "invt"),
#' cdf = "normal", normalization = 0.8)
#' summary(mod1, normalized = TRUE)
summary.glmcat <- function(object, normalized = FALSE, correlation = FALSE,...) {
vcov <- object$cov_beta
coefs <- matrix(NA, length(object$coefficients), 4,
dimnames = list(names(object$coefficients),
c("Estimate", "Std. Error", "z value", "Pr(>|z|)")))
coefs[, 1] <- object$coefficients
coefs[, 2] <- sd <- sqrt(diag(vcov))
# Check if normalized coefficients are requested
if(normalized){
cat("Normalized coefficients with s0 = ",object$normalization_s0, "\n")
coefs <- matrix(NA, length(object$coefficients*object$normalization_s0), 4,
dimnames = list(names(object$coefficients*object$normalization_s0),
c("Estimate", "Std. Error", "z value", "Pr(>|z|)")))
coefs[, 1] <- object$coefficients*object$normalization_s0
coefs[, 2] <- sd <- sqrt(diag(vcov))*object$normalization_s0
}
if(!all(is.finite(vcov))) {
## warning("Variance-covariance matrix of the parameters is not defined")
coefs[, 2:4] <- NA
if(correlation) warning("Correlation matrix is unavailable")
}
else {
# alias <- unlist(object$aliased)
## Cond is Inf if Hessian contains NaNs:
object$cond.H <-
if(any(is.na(object$Hessian))) Inf
else with(eigen(object$Hessian, symmetric=TRUE, only.values = TRUE),
abs(max(values) / min(values)))
coefs[, 3] <- coefs[, 1]/coefs[, 2]
coefs[, 4] <- 2 * pnorm(abs(coefs[, 3]),
lower.tail=FALSE)
if(correlation)
object$correlation <- cov2cor(vcov)
}
# coefs[, 1] <- object$coefficients
rownames(coefs) <- rownames(object$coefficients)
object$coefficients <- coefs
class(object) <- "summary.glmcat"
object
}
#' Model coefficients of a fitted \code{glmcat} model object
#' @description Returns the coefficient estimates of the fitted \code{glmcat} model object.
#' @param object an fitted object of class \code{glmcat}.
#' @param na.rm TRUE for NA coefficients to be removed, default is FALSE.
#' @rdname coef
#' @param ... additional arguments affecting the \code{coef} method.
#' @exportS3Method
coef.glmcat <- function(object, na.rm = FALSE, ...) {
if (na.rm) {
coefs <- object$coefficients
coefs[!is.na(coefs)]
}
else {
object$coefficients
}
}
#' Number of observations of a fitted \code{glmcat} model object
#' @description Extract the number of observations of the fitted \code{glmcat} model object.
#' @param object an fitted object of class \code{glmcat}.
#' @param ... additional arguments affecting the \code{nobs} method.
#' @rdname nobs
#' @method nobs glmcat
#' @exportS3Method
nobs.glmcat <- function(object,...) {
return(object$nobs_glmcat)
}
#' Log-likelihood of a fitted \code{glmcat} model object
#' @description Extract Log-likelihood of a fitted \code{glmcat} model object.
#' @rdname logLik
#' @param object an fitted object of class \code{glmcat}.
#' @param ... additional arguments affecting the loglik.
#' @method logLik glmcat
#' @exportS3Method
logLik.glmcat <- function(object,...) {
structure(object$LogLikelihood,
df = object$df, nobs_glmcat = object$nobs_glmcat,
class = "logLik"
)
}
#' Extract AIC from a fitted \code{glmcat} model object
#' @description Method to compute the (generalized) Akaike An Information Criterion for a fitted object of class \code{glmcat}.
#' @rdname extractAIC
#' @param fit an fitted object of class \code{glmcat}.
#' @param ... further arguments (currently unused in base R).
#' @method extractAIC glmcat
#' @examples
#' model <- glmcat(formula = Level ~ Age, data = DisturbedDreams,
#' ref_category = "Very.severe", ratio = "cumulative")
#' extractAIC(model)
#' @exportS3Method
extractAIC.glmcat <- function(fit, ...) {
scale = 0
k = 2
edf <- fit$df
c(edf, -2*fit$LogLikelihood + k * edf)
}
#' Control parameters for \code{glmcat} models
#' @description Set control parameters for \code{glmcat} models.
#' @rdname control_glmcat
#' @param maxit the maximum number of the Fisher's Scoring Algorithm iterations. Defaults to 25.
#' @param epsilon a double to change update the convergence criterion of GLMcat models.
#' @param beta_init an appropriate sized vector for the initial iteration of the algorithm.
#' @export
control_glmcat <- function(maxit = 25, epsilon = 1e-06, beta_init = NA) {
return(list("maxit" = maxit, "epsilon" = epsilon, "beta_init" = beta_init))
# return(maxit)
}
# Computes the lower tail probability of the chi-square distribution
# with non-negative degrees of freedom, replacing non-positive values
# of degrees of freedom with NA.
# Parameters:
# - q: quantiles
# - df: degrees of freedom
# - ...: additional arguments passed to the pchisq function
safe_pchisq <- function(q, df, ...) {
df[df <= 0] <- NA
pchisq(q = q, df = df, ...)
}
# Performs single term deletions from a model object and returns the resulting analysis of deviance table.
# Parameters:
# - object: a model object
# - scope: a character vector specifying the terms to be dropped from the model
# - data: a data frame or matrix containing the data
# - scale: a numeric value specifying the scale parameter
# - test: a character string specifying the test type ("none" or "Chisq")
# - trace: a logical value indicating whether to display trace information
# - ...: additional arguments
drop2 <- function(object, scope, data, scale = 0, test=c("none", "Chisq"),
trace = FALSE, ...)
{
tl <- attr(terms(object), "term.labels")
if(missing(scope)) scope <- drop.scope(object)
else {
if(!is.character(scope))
scope <- attr(terms(update.formula(object$formula, scope)), "term.labels")
if(!all(match(scope, tl, 0L) > 0L))
stop("scope is not a subset of term labels")
}
ns <- length(scope)
ans <- matrix(nrow = ns + 1L, ncol = 2L,
dimnames = list(c("<none>", scope), c("df", "AIC")))
ans[1, ] <- AIC(object)
n0 <- nobs(object, use.fallback = TRUE)
env <- environment(formula(object))
for(i in seq_len(ns)) {
tt <- scope[i]
if(trace > 1) {
cat("trying -", tt, "\n", sep = "")
flush.console()
}
nfit <- update(object$formula, as.formula(paste("~ . -", tt)),
evaluate = FALSE)
fun_in = object$Function
if(fun_in == "GLMcat"){
object$parallel <- object$parallel[object$parallel != tt]
if(length(object$parallel) == 0) {object$parallel <- NA}
nfit <- .GLMcat(nfit, data, object$ratio, object$cdf, object$parallel,
object$categories_order, object$ref_category,
object$threshold, control_glmcat(object$control$maxit, object$control$epsilon, object$control$beta_init),
object$normalization_s0)
}else{
object$arguments$alternative_specific <- object$arguments$alternative_specific[object$arguments$alternative_specific != tt]
if(length(object$arguments$alternative_specific) == 0) {object$arguments$alternative_specific <- NA}
nfit <- .Discrete_CM(formula = nfit,
data = data,
cdf = object$cdf,
case_id = object$arguments$case_id,
alternatives = object$arguments$alternatives,
alternative_specific = object$arguments$alternative_specific,
# object$categories_order,
intercept = object$arguments$intercept,
reference = object$arguments$reference,
control_glmcat(object$control$maxit,
object$control$epsilon, object$control$beta_init),
normalization = object$normalization_s0)
}
ans[i+1, ] <- AIC(nfit)
nnew <- nobs(nfit, use.fallback = TRUE)
if(all(is.finite(c(n0, nnew))) && nnew != n0)
stop("number of rows in use has changed: remove missing values?")
}
dfs <- ans[1L , 1L] - ans[, 1L]
dfs[1L] <- NA
aod <- data.frame(Df = dfs, AIC = ans[,2])
test <- match.arg(test)
if(test == "Chisq") {
dev <- ans[, 2L] - 2*ans[, 1L]
dev <- dev - dev[1L] ; dev[1L] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail = FALSE)
aod[, c("LRT", "Pr(>Chi)")] <- list(dev, P)
}
head <- c("Single term deletions", "\nModel:", deparse(formula(object)),
if(scale > 0) paste("\nscale: ", format(scale), "\n"))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
# Performs single term additions to a model object and returns the resulting analysis of deviance table.
# Parameters:
# - object: a model object
# - scope: a character vector specifying the terms to be added to the model
add2 <- function(object, scope, data, scale = 0, test=c("none", "Chisq"),
trace = FALSE, ...)
{
if(missing(scope) || is.null(scope)) stop("no terms in scope")
if(!is.character(scope))
scope <- add.scope(object, update.formula(object, scope))
if(!length(scope))
stop("no terms in scope for adding to object")
# newform <- update.formula(object,
# paste(". ~ . +", paste(scope, collapse="+")))
# data <- model.frame(update(object, newform)) # remove NAs
# object <- update(object, data = data)
ns <- length(scope)
ans <- matrix(nrow = ns + 1L, ncol = 2L,
dimnames = list(c("<none>", scope), c("df", "AIC")))
ans[1L, ] <- AIC(object)
n0 <- nobs(object, use.fallback = TRUE)
# env <- environment(formula(object))
for(i in seq_len(ns)) {
tt <- scope[i]
if(trace > 1) {
cat("trying +", tt, "\n", sep = "")
flush.console()
}
# nfit <- update(object, as.formula(paste("~ . +", tt)),
# evaluate = FALSE)
# nfit <- eval(nfit, envir=env) # was eval.parent(nfit)
nfit <- update(object$formula, as.formula(paste("~ . +", tt)),
evaluate = FALSE)
# object$parallel <- object$parallel[object$parallel != tt]
fun_in = object$Function
if(fun_in == "GLMcat"){
# object$parallel <- object$parallel[object$parallel != tt]
# if(length(object$parallel) == 0) {object$parallel <- NA}
nfit <- .GLMcat(nfit, data, object$ratio, object$cdf, object$parallel,
object$categories_order, object$ref_category,
object$threshold, control_glmcat(object$control$maxit, object$control$epsilon, object$control$beta_init),
object$normalization_s0)
}else{
# object$arguments$alternative_specific <- object$arguments$alternative_specific[object$arguments$alternative_specific != tt]
# if(length(object$arguments$alternative_specific) == 0) {object$arguments$alternative_specific <- NA}
nfit <- .Discrete_CM(formula = nfit,
data = data,
cdf = object$cdf,
alternative_specific = object$arguments$alternative_specific,
# object$categories_order,
case_id = object$arguments$case_id,
alternatives = object$arguments$alternatives,
reference = object$arguments$reference,
intercept = object$arguments$intercept,
control_glmcat(object$control$maxit,
object$control$epsilon, object$control$beta_init),
normalization = object$normalization_s0)
}
ans[i+1L, ] <- AIC(nfit)
nnew <- nobs(nfit, use.fallback = TRUE)
if(all(is.finite(c(n0, nnew))) && nnew != n0)
stop("number of rows in use has changed: remove missing values?")
}
dfs <- ans[, 1L] - ans[1L, 1L]
dfs[1L] <- NA
aod <- data.frame(Df = dfs, AIC = ans[, 2L])
test <- match.arg(test)
if(test == "Chisq") {
dev <- ans[, 2L] - 2*ans[, 1L]
dev <- dev[1L] - dev; dev[1L] <- NA
nas <- !is.na(dev)
P <- dev
P[nas] <- safe_pchisq(dev[nas], dfs[nas], lower.tail=FALSE)
aod[, c("LRT", "Pr(>Chi)")] <- list(dev, P)
}
head <- c("Single term additions", "\nModel:", deparse(formula(object)),
if(scale > 0) paste("\nscale: ", format(scale), "\n"))
class(aod) <- c("anova", "data.frame")
attr(aod, "heading") <- head
aod
}
#' Stepwise for a \code{glmcat} model object
#' @description Stepwise for a \code{glmcat} model object based on the AIC.
#' @param object an fitted object of class \code{glmcat}.
#' @param scope defines the range of models examined in the stepwise search (same as in the step function of the stats package). This should be either a single formula, or a list containing components upper and lower, both formulae.
#' @param direction the mode of the stepwise search.
#' @param trace to print the process information.
#' @param steps the maximum number of steps.
#' @rdname step
#' @method step glmcat
#' @usage \method{step}{glmcat}(object, scope, direction, trace, steps)
#' @exportS3Method
step.glmcat <- function (object,
scope,
direction = c("both", "backward", "forward"),
trace = 1, steps = 1000)
{
data <- object$data
mydeviance <- function(x, ...) {
dev <- deviance(x)
if (!is.null(dev))
dev
else AIC(x)
}
cut.string <- function(string) {
if (length(string) > 1L)
string[-1L] <- paste0("\n", string[-1L])
string
}
# re.arrange <- function(keep) {
# namr <- names(k1 <- keep[[1L]])
# namc <- names(keep)
# nc <- length(keep)
# nr <- length(k1)
# array(unlist(keep, recursive = FALSE), c(nr, nc), list(namr,
# namc))
# }
step.results <- function(models, fit, object, usingCp = FALSE) {
change <- sapply(models, "[[", "change")
rd <- sapply(models, "[[", "deviance")
dd <- c(NA, abs(diff(rd)))
rdf <- sapply(models, "[[", "df.resid")
ddf <- c(NA, diff(rdf))
AIC <- sapply(models, "[[", "AIC")
heading <- c("Stepwise Model Path \nAnalysis of Deviance Table",
"\nInitial Model:", deparse(formula(object)), "\nFinal Model:",
deparse(formula(fit)), "\n")
aod <- data.frame(Step = I(change), Df = ddf, Deviance = dd,
`Resid. Df` = rdf, `Resid. Dev` = rd, AIC = AIC,
check.names = FALSE)
if (usingCp) {
cn <- colnames(aod)
cn[cn == "AIC"] <- "Cp"
colnames(aod) <- cn
}
attr(aod, "heading") <- heading
fit$anova <- aod
fit
}
object$terms <- terms(formula(object$formula), data = data)
Terms <- terms(object)
object$call$formula <- object$formula <- Terms
md <- missing(direction)
direction <- match.arg(direction)
backward <- direction == "both" | direction == "backward"
forward <- direction == "both" | direction == "forward"
if (missing(scope)) {
fdrop <- numeric()
fadd <- attr(Terms, "factors")
if (md)
forward <- FALSE
}
else {
if (is.list(scope)) {
fdrop <- if (!is.null(fdrop <- scope$lower))
attr(terms(update.formula(object, fdrop)), "factors")
else numeric()
fadd <- if (!is.null(fadd <- scope$upper))
attr(terms(update.formula(object, fadd)), "factors")
}
else {
fadd <- if (!is.null(fadd <- scope))
attr(terms(update.formula(object, scope)), "factors")
fdrop <- numeric()
}
}
models <- vector("list", steps)
# if (!is.null(keep))
# keep.list <- vector("list", steps)
n <- nobs(object, use.fallback = TRUE)
fit <- object
bAIC <- AIC(fit)
edf <- length(attr(fit$terms,"term.labels"))
# bAIC <- bAIC[2L]
if (is.na(bAIC))
stop("AIC is not defined for this model, so 'step' cannot proceed")
if (bAIC == -Inf)
stop("AIC is -infinity for this model, so 'step' cannot proceed")
nm <- 1
if (trace) {
cat("Start: AIC=", format(round(bAIC, 2)), "\n", cut.string(deparse(formula(fit))),
"\n\n", sep = "")
flush.console()
}
models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n -
edf, change = "", AIC = bAIC)
# if (!is.null(keep))
# keep.list[[nm]] <- keep(fit, bAIC)
usingCp <- FALSE
while (steps > 0) {
steps <- steps - 1
AIC <- bAIC
ffac <- attr(Terms, "factors")
scope <- factor.scope(ffac, list(add = fadd, drop = fdrop))
aod <- NULL
change <- NULL
if (backward && length(scope$drop)) {
aod <- drop2(fit, scope$drop, data, scale = 0, trace = trace)
rn <- row.names(aod)
# print(aod)
row.names(aod) <- c(rn[1L], paste("-", rn[-1L]))
if (any(aod$Df == 0, na.rm = TRUE)) {
zdf <- aod$Df == 0 & !is.na(aod$Df)
change <- rev(rownames(aod)[zdf])[1L]
}
}
if (is.null(change)) {
if (forward && length(scope$add)) {
aodf <- add2(fit, scope$add, data, scale = 0,
trace = trace)
rn <- row.names(aodf)
row.names(aodf) <- c(rn[1L], paste("+", rn[-1L]))
aod <- if (is.null(aod))
aodf
else rbind(aod, aodf[-1, , drop = FALSE])
}
attr(aod, "heading") <- NULL
nzdf <- if (!is.null(aod$Df))
aod$Df != 0 | is.na(aod$Df)
aod <- aod[nzdf, ]
if (is.null(aod) || ncol(aod) == 0)
break
nc <- match(c("Cp", "AIC"), names(aod))
nc <- nc[!is.na(nc)][1L]
o <- order(aod[, nc])
if (trace)
print(aod[o, ])
if (o[1L] == 1)
break
change <- rownames(aod)[o[1L]]
}
usingCp <- match("Cp", names(aod), 0L) > 0L
# fit <- update(fit, paste("~ .", change), evaluate = FALSE)
# fit <- eval.parent(fit)
form1 <- update(fit$formula, as.formula(paste("~ .", change)),
evaluate = FALSE)
object$parallel <- object$parallel[object$parallel != str_trim(sub("-","", change))]
if(length(object$parallel) == 0) {object$parallel <- NA}
# fit <- GLMcat(form1, data, object$ratio, object$cdf, object$parallel,
# object$categories_order, object$ref_category,
# object$threshold, control_glmcat(object$control$maxit, object$control$epsilon, object$control$beta_init),
# object$normalization_s0)
fun_in = object$Function
if(fun_in == "GLMcat"){
fit <- .GLMcat(form1, data, object$ratio, object$cdf, object$parallel,
object$categories_order, object$ref_category,
object$threshold, control_glmcat(object$control$maxit, object$control$epsilon, object$control$beta_init),
object$normalization_s0)
}else{
# object$arguments$alternative_specific <- object$arguments$alternative_specific[object$arguments$alternative_specific != tt]
# if(length(object$arguments$alternative_specific) == 0) {object$arguments$alternative_specific <- NA}
fit <- .Discrete_CM(formula = form1,
data = data,
cdf = object$cdf,
alternative_specific = object$arguments$alternative_specific,
# object$categories_order,
case_id = object$arguments$case_id,
alternatives = object$arguments$alternatives,
reference = object$arguments$reference,
intercept = object$arguments$intercept,
control_glmcat(object$control$maxit,
object$control$epsilon, object$control$beta_init),
normalization = object$normalization_s0)
}
fit$terms <- terms(formula(fit$formula), data = fit$data)
nnew <- nobs(fit, use.fallback = TRUE)
if (all(is.finite(c(n, nnew))) && nnew != n)
stop("number of rows in use has changed: remove missing values?")
Terms <- terms(fit)
bAIC <- AIC(fit)
edf <- length(attr(fit$terms,"term.labels"))
if (trace) {
cat("\nStep: AIC=", format(round(bAIC, 2)), "\n",
cut.string(deparse(formula(fit))), "\n\n", sep = "")
flush.console()
}
if (bAIC >= AIC + 1e-07)
break
nm <- nm + 1
models[[nm]] <- list(deviance = mydeviance(fit), df.resid = n -
edf, change = change, AIC = bAIC)
# if (!is.null(keep))
# keep.list[[nm]] <- keep(fit, bAIC)
}
# if (!is.null(keep))
# fit$keep <- re.arrange(keep.list[seq(nm)])
step.results(models = models[seq(nm)], fit, object, usingCp)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.