library(HIBAG)
library(ggplot2)

version <- c("v1.24.0\n(baseline)", "v1.24.0\n(POPCNT)", "v1.26.1\n(SSE2)",
    "v1.26.1\n(SSE4&POPCNT)", "v1.26.1\n(AVX)", "v1.26.1\n(AVX2)", "v1.26.1\n(AVX512F)",
    "v1.26.1\n(AVX512BW)")
vs <- factor(version, version)

draw <- function(dat)
{
    ggplot(dat, aes(x=Intrinsics, y=Speedup, fill=Gene)) +
        xlab("Package Version and Intrinsics") + ylab("Speed-up factor") +
        geom_bar(stat="identity", width=0.9, colour="white", position=position_dodge()) +
        geom_hline(yintercept=1, linetype=2, colour="gray33") +
        geom_text(aes(label=Speedup), vjust=-0.55, position=position_dodge(0.9), size=2) +
        scale_fill_brewer(palette="Dark2") + theme_bw()
}

Benchmarks on building the training models

Benchmarks were run on the compute nodes of Cascade Lake microarchitecture (Intel Xeon Gold 6248 CPU\@2.50GHz). The HIBAG package was compiled with GCC v8.3.0 in R-v4.0.2. In HIBAG (>= v1.26.1), users can use hlaSetKernelTarget() to select the target intrinsics, or hlaSetKernelTarget("max") for maximizing the algorithm efficiency.

GCC (>= v6.0) is recommended to compile the HIBAG package. In the benchmarks, the kernel version of HIBAG_v1.24 is v1.4, and the kernel version of newer package is v1.5.

# continue without interrupting
IgnoreError <- function(cmd) tryCatch(cmd, error=function(e) { message("Not support"); invisible() })
IgnoreError(hlaSetKernelTarget("sse4"))
IgnoreError(hlaSetKernelTarget("avx"))
IgnoreError(hlaSetKernelTarget("avx2"))
IgnoreError(hlaSetKernelTarget("avx512f"))
IgnoreError(hlaSetKernelTarget("avx512bw"))

The CPU may reduce the frequency of the cores dynamically to keep power usage of AVX512 within bounds, hlaSetKernelTarget("auto.avx2") can automatically select AVX2 even if the CPU supports the AVX512F and AVX512BW intrinsics. Please check the CPU throttling with AVX512 intrinsics.

1) Speedup factor using small training sets

s <- "HLA-A  HLA-B  HLA-C  HLA-DRB1
1.0 1.0 1.0 1.0
1.7 1.6 1.6 1.6
1.2 1.1 1.0 1.0
2.3 2.2 2.2 2.2
2.7 2.5 2.8 2.6
3.2 2.7 2.8 2.7
3.3 2.8 3.6 2.9
4.2 3.5 4.6 3.9"

b <- read.table(text=s, header=TRUE)
colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE)
b1 <- data.frame(Intrinsics=rep(vs, ncol(b)), Gene=as.factor(rep(names(b), each=nrow(b))),
    Speedup=unname(unlist(b)))
draw(b1) + ggtitle("Building HIBAG models using ~1,000 samples:")

2) Speedup factor using medium training sets

s <- "HLA-A HLA-B   HLA-C   HLA-DRB1    HLA-DQA1    HLA-DQB1
1.0 1.0 1.0 1.0 1.0 1.0
1.6 1.6 1.6 1.6 1.5 1.6
1.1 1.0 1.0 1.0 1.0 1.1
2.2 2.2 2.2 2.2 2.3 2.3
2.6 2.8 2.9 2.8 2.9 2.9
2.7 2.8 2.9 2.9 3.0 3.0
2.9 3.7 3.5 3.4 4.1 3.8
3.5 4.7 4.7 4.6 5.3 5.2"

b <- read.table(text=s, header=TRUE)
colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE)
b2 <- data.frame(Intrinsics=rep(vs, ncol(b)),
    Gene=factor(rep(names(b), each=nrow(b)), names(b)),
    Speedup=unname(unlist(b)))
draw(b2) + ggtitle("Building HIBAG models using ~5,000 samples:")

3) Speedup factor using large training sets

s <- "HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQA1 HLA-DQB1
1.0 1.0 1.0 1.0 1.0 1.0
1.5 1.7 1.7 1.7 1.8 1.7
1.2 1.2 1.2 1.1 1.2 1.2
1.9 2.3 2.3 2.3 2.3 2.4
2.2 2.9 2.8 3.0 3.0 2.9
3.3 3.6 3.6 3.6 3.7 3.7
4.1 4.1 4.4 4.3 4.4 4.5
5.4 6.0 6.4 6.5 6.9 7.0"

b <- read.table(text=s, header=TRUE)
colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE)
b3 <- data.frame(Intrinsics=rep(vs, ncol(b)),
    Gene=factor(rep(names(b), each=nrow(b)), names(b)),
    Speedup=unname(unlist(b)))
draw(b3) + ggtitle("Building HIBAG models using ~10,000 samples:")

Multithreading

The multi-threaded implementation can be enabled by specifying the number of threads via nthread in the function hlaAttrBagging(), or hlaParallelAttrBagging(cl=nthread, ...).

Here are the performance of multithreading and the comparison between AVX2 and AVX512BW:

s <- "HLAgenes  1thread 8threads    16threads   1thread 8threads    16threads
HLA-A   1.0 7.5 13.8    1.3 9.5 17.5
HLA-B   1.0 7.6 14.6    1.6 12.0    22.6
HLA-C   1.0 7.5 13.9    1.6 11.3    20.1
HLA-DRB1    1.0 7.5 14.2    1.6 11.4    21.3
HLA-DQA1    1.0 7.1 12.2    1.9 11.9    19.0
HLA-DQB1    1.0 7.2 12.9    1.7 11.4    19.0"

b <- read.table(text=s, header=TRUE)
x <- unname(unlist(b[,-1]))
nt <- c(rep(paste("AVX2:", c(1,8,16)), each=nrow(b)), rep(paste("AVX512BW:", c(1,8,16)), each=nrow(b)))
nt <- factor(nt, c("AVX2: 1", "AVX2: 8", "AVX2: 16", "AVX512BW: 1", "AVX512BW: 8", "AVX512BW: 16"))
ss <- levels(nt)
ss[1L] <- "AVX2: 1 (baseline)"
levels(nt) <- ss
dat <- data.frame(Speedup=x, Threads=nt,
    Gene=factor(rep(b$HLAgenes, 6), b$HLAgenes))
ggplot(dat, aes(x=Gene, y=Speedup, fill=Threads)) +
    xlab("HLA genes / HIBAG_v1.26") + ylab("Speed-up factor") +
    geom_bar(stat="identity", width=0.9, colour="white", position=position_dodge()) +
    geom_hline(yintercept=1, linetype=2, colour="gray33") +
    geom_text(aes(label=Speedup), vjust=-0.55, position=position_dodge(0.9), size=2) +
    scale_fill_brewer(palette="Dark2") + theme_bw() +
    ggtitle("Building HIBAG models using ~5,000 samples and AVX2/AVX512BW Intrinsics:")

Session Info

sessionInfo()

References



zhengxwen/HIBAG documentation built on Nov. 19, 2024, 1:01 p.m.