library(HIBAG) library(ggplot2) version <- c("v1.24.0\n(baseline)", "v1.24.0\n(POPCNT)", "v1.26.1\n(SSE2)", "v1.26.1\n(SSE4&POPCNT)", "v1.26.1\n(AVX)", "v1.26.1\n(AVX2)", "v1.26.1\n(AVX512F)", "v1.26.1\n(AVX512BW)") vs <- factor(version, version) draw <- function(dat) { ggplot(dat, aes(x=Intrinsics, y=Speedup, fill=Gene)) + xlab("Package Version and Intrinsics") + ylab("Speed-up factor") + geom_bar(stat="identity", width=0.9, colour="white", position=position_dodge()) + geom_hline(yintercept=1, linetype=2, colour="gray33") + geom_text(aes(label=Speedup), vjust=-0.55, position=position_dodge(0.9), size=2) + scale_fill_brewer(palette="Dark2") + theme_bw() }
Benchmarks were run on the compute nodes of Cascade Lake microarchitecture (Intel Xeon Gold 6248 CPU\@2.50GHz). The HIBAG package was compiled with GCC v8.3.0 in R-v4.0.2. In HIBAG (>= v1.26.1), users can use hlaSetKernelTarget()
to select the target intrinsics, or hlaSetKernelTarget("max")
for maximizing the algorithm efficiency.
GCC (>= v6.0) is recommended to compile the HIBAG package. In the benchmarks, the kernel version of HIBAG_v1.24 is v1.4, and the kernel version of newer package is v1.5.
# continue without interrupting IgnoreError <- function(cmd) tryCatch(cmd, error=function(e) { message("Not support"); invisible() })
IgnoreError(hlaSetKernelTarget("sse4")) IgnoreError(hlaSetKernelTarget("avx")) IgnoreError(hlaSetKernelTarget("avx2")) IgnoreError(hlaSetKernelTarget("avx512f")) IgnoreError(hlaSetKernelTarget("avx512bw"))
The CPU may reduce the frequency of the cores dynamically to keep power usage of AVX512 within bounds, hlaSetKernelTarget("auto.avx2")
can automatically select AVX2 even if the CPU supports the AVX512F and AVX512BW intrinsics. Please check the CPU throttling with AVX512 intrinsics.
s <- "HLA-A HLA-B HLA-C HLA-DRB1 1.0 1.0 1.0 1.0 1.7 1.6 1.6 1.6 1.2 1.1 1.0 1.0 2.3 2.2 2.2 2.2 2.7 2.5 2.8 2.6 3.2 2.7 2.8 2.7 3.3 2.8 3.6 2.9 4.2 3.5 4.6 3.9" b <- read.table(text=s, header=TRUE) colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE) b1 <- data.frame(Intrinsics=rep(vs, ncol(b)), Gene=as.factor(rep(names(b), each=nrow(b))), Speedup=unname(unlist(b))) draw(b1) + ggtitle("Building HIBAG models using ~1,000 samples:")
s <- "HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQA1 HLA-DQB1 1.0 1.0 1.0 1.0 1.0 1.0 1.6 1.6 1.6 1.6 1.5 1.6 1.1 1.0 1.0 1.0 1.0 1.1 2.2 2.2 2.2 2.2 2.3 2.3 2.6 2.8 2.9 2.8 2.9 2.9 2.7 2.8 2.9 2.9 3.0 3.0 2.9 3.7 3.5 3.4 4.1 3.8 3.5 4.7 4.7 4.6 5.3 5.2" b <- read.table(text=s, header=TRUE) colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE) b2 <- data.frame(Intrinsics=rep(vs, ncol(b)), Gene=factor(rep(names(b), each=nrow(b)), names(b)), Speedup=unname(unlist(b))) draw(b2) + ggtitle("Building HIBAG models using ~5,000 samples:")
s <- "HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQA1 HLA-DQB1 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.7 1.7 1.7 1.8 1.7 1.2 1.2 1.2 1.1 1.2 1.2 1.9 2.3 2.3 2.3 2.3 2.4 2.2 2.9 2.8 3.0 3.0 2.9 3.3 3.6 3.6 3.6 3.7 3.7 4.1 4.1 4.4 4.3 4.4 4.5 5.4 6.0 6.4 6.5 6.9 7.0" b <- read.table(text=s, header=TRUE) colnames(b) <- gsub(".", "-", colnames(b), fixed=TRUE) b3 <- data.frame(Intrinsics=rep(vs, ncol(b)), Gene=factor(rep(names(b), each=nrow(b)), names(b)), Speedup=unname(unlist(b))) draw(b3) + ggtitle("Building HIBAG models using ~10,000 samples:")
The multi-threaded implementation can be enabled by specifying the number of threads via nthread
in the function hlaAttrBagging()
, or hlaParallelAttrBagging(cl=nthread, ...)
.
Here are the performance of multithreading and the comparison between AVX2 and AVX512BW:
s <- "HLAgenes 1thread 8threads 16threads 1thread 8threads 16threads HLA-A 1.0 7.5 13.8 1.3 9.5 17.5 HLA-B 1.0 7.6 14.6 1.6 12.0 22.6 HLA-C 1.0 7.5 13.9 1.6 11.3 20.1 HLA-DRB1 1.0 7.5 14.2 1.6 11.4 21.3 HLA-DQA1 1.0 7.1 12.2 1.9 11.9 19.0 HLA-DQB1 1.0 7.2 12.9 1.7 11.4 19.0" b <- read.table(text=s, header=TRUE) x <- unname(unlist(b[,-1])) nt <- c(rep(paste("AVX2:", c(1,8,16)), each=nrow(b)), rep(paste("AVX512BW:", c(1,8,16)), each=nrow(b))) nt <- factor(nt, c("AVX2: 1", "AVX2: 8", "AVX2: 16", "AVX512BW: 1", "AVX512BW: 8", "AVX512BW: 16")) ss <- levels(nt) ss[1L] <- "AVX2: 1 (baseline)" levels(nt) <- ss dat <- data.frame(Speedup=x, Threads=nt, Gene=factor(rep(b$HLAgenes, 6), b$HLAgenes)) ggplot(dat, aes(x=Gene, y=Speedup, fill=Threads)) + xlab("HLA genes / HIBAG_v1.26") + ylab("Speed-up factor") + geom_bar(stat="identity", width=0.9, colour="white", position=position_dodge()) + geom_hline(yintercept=1, linetype=2, colour="gray33") + geom_text(aes(label=Speedup), vjust=-0.55, position=position_dodge(0.9), size=2) + scale_fill_brewer(palette="Dark2") + theme_bw() + ggtitle("Building HIBAG models using ~5,000 samples and AVX2/AVX512BW Intrinsics:")
sessionInfo()
Zheng X, et al. (2014). HIBAG -- HLA Genotype Imputation with Attribute Bagging. The Pharmacogenomics Journal. https://doi.org/10.1038/tpj.2013.18.
Zheng X (2018). Imputation-based HLA Typing with SNPs in GWAS Studies. Methods in Molecular Biology. https://doi.org/10.1007/978-1-4939-8546-3_11.
Intel AVX2 intrinsics: https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html.
Intel AVX-512 overview: https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html.
National Center for Supercomputing Applications (UIUC): https://www.ncsa.illinois.edu.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.