hlaAttrBagging: Build a HIBAG model

View source: R/HIBAG.R

hlaAttrBaggingR Documentation

Build a HIBAG model

Description

To build a HIBAG model for predicting HLA types with SNP markers.

Usage

hlaAttrBagging(hla, snp, nclassifier=100L, mtry=c("sqrt", "all", "one"),
    prune=TRUE, na.rm=TRUE, mono.rm=TRUE, maf=NaN, nthread=1L, verbose=TRUE,
    verbose.detail=FALSE)

Arguments

hla

the training HLA types, an object of hlaAlleleClass

snp

the training SNP genotypes, an object of hlaSNPGenoClass

nclassifier

the total number of individual classifiers

mtry

a character or a numeric value, the number of variables randomly sampled as candidates for each selection. See details

prune

if TRUE, to perform a parsimonious forward variable selection, otherwise, exhaustive forward variable selection. See details

na.rm

if TRUE, remove the samples with missing HLA alleles

mono.rm

if TRUE, remove monomorphic SNPs

maf

MAF threshold for SNP filter, excluding any SNP with MAF < maf

nthread

specify the number of threads used in the model building; if TRUE, use the number of threads returned from RcppParallel::defaultNumThreads() (by default using all threads)

verbose

if TRUE, show information

verbose.detail

if TRUE, show more information

Details

mtry (the number of variables randomly sampled as candidates for each selection, "sqrt" by default): "sqrt", using the square root of the total number of candidate SNPs; "all", using all candidate SNPs; "one", using one SNP; an integer, specifying the number of candidate SNPs; 0 < r < 1, the number of candidate SNPs is "r * the total number of SNPs".

prune: there is no significant difference on accuracy between parsimonious and exhaustive forward variable selections. If prune=TRUE, the searching algorithm performs a parsimonious forward variable selection: if a new SNP predictor reduces the current out-of-bag accuracy, then it is removed from the candidate SNP set for future searching. Parsimonious selection helps to improve the computational efficiency by reducing the searching times on non-informative SNP markers.

hlaParallelAttrBagging extends hlaAttrBagging to allow parallel computing with multiple compute nodes in a cluster. An autosave function is available in hlaParallelAttrBagging when an new individual classifier is built internally without completing the ensemble.

Value

Return an object of hlaAttrBagClass:

n.samp

the total number of training samples

n.snp

the total number of candidate SNP predictors

sample.id

the sample IDs

snp.id

the SNP IDs

snp.position

SNP position in basepair

snp.allele

a vector of characters with the format of “A allele/B allele”

snp.allele.freq

the allele frequencies

hla.locus

the name of HLA locus

hla.allele

the HLA alleles used in the model

hla.freq

the HLA allele frequencies

assembly

the human genome reference, such like "hg19"

model

internal use

matching

matching proportion in the training set

Author(s)

Xiuwen Zheng

References

Zheng X, Shen J, Cox C, Wakefield J, Ehm M, Nelson M, Weir BS; HIBAG – HLA Genotype Imputation with Attribute Bagging. Pharmacogenomics Journal. doi: 10.1038/tpj.2013.18. https://www.nature.com/articles/tpj201318

See Also

hlaClose, hlaParallelAttrBagging, summary.hlaAttrBagClass, predict.hlaAttrBagClass, hlaPredict, hlaSetKernelTarget

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# divide HLA types randomly
set.seed(100)
hlatab <- hlaSplitAllele(hla, train.prop=0.5)
names(hlatab)
# "training"   "validation"
summary(hlatab$training)
summary(hlatab$validation)

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
train.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel=match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel=match(hlatab$training$value$sample.id,
    HapMap_CEU_Geno$sample.id))
test.geno <- hlaGenoSubset(HapMap_CEU_Geno,
    samp.sel=match(hlatab$validation$value$sample.id,
    HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hlatab$training, train.geno, nclassifier=4,
    verbose.detail=TRUE)
summary(model)

# validation
pred <- hlaPredict(model, test.geno)
summary(pred)

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


# save the parameter file
mobj <- hlaModelToObj(model)
save(mobj, file="HIBAG_model.RData")
save(test.geno, file="testgeno.RData")
save(hlatab, file="HLASplit.RData")

# Clear Workspace
hlaClose(model)  # release all resources of model
rm(list = ls())


######################################################################

# NOW, load a HIBAG model from the parameter file
mobj <- get(load("HIBAG_model.RData"))
model <- hlaModelFromObj(mobj)

# validation
test.geno <- get(load("testgeno.RData"))
hlatab <- get(load("HLASplit.RData"))

pred <- hlaPredict(model, test.geno, type="response")
summary(pred)

# compare
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0))
(comp <- hlaCompareAllele(hlatab$validation, pred, allele.limit=model,
    call.threshold=0.5))


# delete the temporary files
unlink(c("HIBAG_model.RData", "testgeno.RData", "HLASplit.RData"), force=TRUE)

zhengxwen/HIBAG documentation built on Nov. 24, 2024, 5:24 a.m.