hlaOutOfBag: Out-of-bag estimation of overall accuracy, per-allele...

View source: R/HIBAG.R View source: R/DataUtilities.R

hlaOutOfBagR Documentation

Out-of-bag estimation of overall accuracy, per-allele sensitivity, etc

Description

Out-of-bag estimation of overall accuracy, per-allele sensitivity, specificity, positive predictive value, negative predictive value and call rate.

Usage

hlaOutOfBag(model, hla, snp, call.threshold=NaN, verbose=TRUE)

Arguments

model

an object of hlaAttrBagClass or hlaAttrBagObj

hla

the training HLA types, an object of hlaAlleleClass

snp

the training SNP genotypes, an object of hlaSNPGenoClass

call.threshold

the specified call threshold; if NaN, no threshold is used

verbose

if TRUE, show information

Value

Return hlaAlleleClass.

Author(s)

Xiuwen Zheng

See Also

hlaCompareAllele, hlaReport

Examples

# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
    H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
    H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
    locus=hla.id, assembly="hg19")

# SNP predictors within the flanking region on each side
region <- 500   # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
    hla.id, region*1000, assembly="hg19")
length(snpid)  # 275

# training and validation genotypes
geno <- hlaGenoSubset(HapMap_CEU_Geno,
    snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
    samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))

# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, geno, nclassifier=4)
summary(model)

# out-of-bag estimation
(comp <- hlaOutOfBag(model, hla, geno, call.threshold=NaN, verbose=TRUE))

# report
hlaReport(comp, type="txt")

hlaReport(comp, type="tex")

hlaReport(comp, type="html")

zhengxwen/HIBAG documentation built on Nov. 24, 2024, 5:24 a.m.