View source: R/HIBAG.R View source: R/DataUtilities.R
hlaOutOfBag | R Documentation |
Out-of-bag estimation of overall accuracy, per-allele sensitivity, specificity, positive predictive value, negative predictive value and call rate.
hlaOutOfBag(model, hla, snp, call.threshold=NaN, verbose=TRUE)
model |
an object of |
hla |
the training HLA types, an object of
|
snp |
the training SNP genotypes, an object of
|
call.threshold |
the specified call threshold; if |
verbose |
if TRUE, show information |
Return hlaAlleleClass
.
Xiuwen Zheng
hlaCompareAllele
, hlaReport
# make a "hlaAlleleClass" object
hla.id <- "A"
hla <- hlaAllele(HLA_Type_Table$sample.id,
H1 = HLA_Type_Table[, paste(hla.id, ".1", sep="")],
H2 = HLA_Type_Table[, paste(hla.id, ".2", sep="")],
locus=hla.id, assembly="hg19")
# SNP predictors within the flanking region on each side
region <- 500 # kb
snpid <- hlaFlankingSNP(HapMap_CEU_Geno$snp.id, HapMap_CEU_Geno$snp.position,
hla.id, region*1000, assembly="hg19")
length(snpid) # 275
# training and validation genotypes
geno <- hlaGenoSubset(HapMap_CEU_Geno,
snp.sel = match(snpid, HapMap_CEU_Geno$snp.id),
samp.sel = match(hla$value$sample.id, HapMap_CEU_Geno$sample.id))
# train a HIBAG model
set.seed(100)
# please use "nclassifier=100" when you use HIBAG for real data
model <- hlaAttrBagging(hla, geno, nclassifier=4)
summary(model)
# out-of-bag estimation
(comp <- hlaOutOfBag(model, hla, geno, call.threshold=NaN, verbose=TRUE))
# report
hlaReport(comp, type="txt")
hlaReport(comp, type="tex")
hlaReport(comp, type="html")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.