pp_preprocess: A wrapper function to quickly run standard processing...

Description Usage Arguments Value

View source: R/pp.R

Description

Run NormalizeData, CellCycleScoring, FindVariableFeatures, ScaleData, RunUMAP/TSNE and FindClusters.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
pp_preprocess(
  object,
  scale.factor = 10000,
  s.features = cc.genes$s.genes,
  g2m.features = cc.genes$g2m.gene,
  do.regress.cc = T,
  pp = c("SCT", "RNA"),
  nfeatures = 2000,
  ndim = 20,
  skip_tsne = F,
  resolution = 0.5
)

Arguments

object

a Seurat object

scale.factor

Sets the scale factor for cell-level normalization. (NormalizeData)

s.features

A vector of features associated with S phase (CellCycleScoring)

g2m.features

A vector of features associated with G2M phase (CellCycleScoring)

do.regress.cc

regress out cell cycle scores (ScaleData)

pp

do SCTransform or standard RNA process

nfeatures

Number of features to return (SCTransform/FindVariableFeatures)

ndim

Number of dimensions to use for dimensionality reduction and clustering (RunUMAP/TSNE/FindClusters)

skip_tsne

you may set TRUE to skip RunTSNE step for large dataset.

resolution

Value of the resolution parameter (FindClusters)

Value

a Seurat object


zzwch/convgene documentation built on July 11, 2021, 9:41 a.m.