Nothing
oneWayAOV.Gibbs = function(y,iterations=10000,rscale="medium", progress=TRUE, gibi=NULL, logbf=FALSE){
rscale = rpriorValues("allNways","fixed",rscale)
N = as.integer(colSums(!is.na(y)))
J=as.integer(dim(y)[2])
I=as.integer(dim(y)[1])
iterations = as.integer(iterations)
if(!is.null(gibi)) {
progress=TRUE;
if(!is.function(gibi))
stop("Malformed GIBI argument (not a function). You should not set this argument if running oneWayAOV.Gibbs from the console.")
}
if(progress & is.null(gibi)){
pb = txtProgressBar(min = 0, max = 100, style = 3)
}else{
pb=NULL
}
pbFun = function(samps){
if(progress){
percent = as.integer(round(samps / iterations * 100))
if(is.null(gibi)){
setTxtProgressBar(pb, percent)
}else{
gibi(percent)
}
}
}
output = .Call("RgibbsOneWayAnova", y, N, J, I, rscale, iterations,
progress, pbFun, new.env(), package="BayesFactor")
if(progress & is.null(gibi)) close(pb);
rownames(output[[1]]) = c("mu",paste("beta",1:J,sep=""),"CMDESingle","CMDEDouble","sig2","g")
names(output[[2]])=c("logCMDESingle","logCMDEDouble","logCMDESingleKahan","logCMDEDoubleKahan")
logPriorDensDouble = dmvnorm(rep(0,J),rep(0,J),diag(J),log=TRUE)
logPostDensDouble = logMeanExpLogs(output[[1]][1+J+2,])
lbf = logPostDensDouble - logPriorDensDouble
if(logbf){
return(list(chains=mcmc(t(output[[1]])), BF=-lbf))
}else{
return(list(chains=mcmc(t(output[[1]])), BF=exp(-lbf)))
}
}
marginal.g.oneWay = function(g,F,N,J,rscale)
{
dfs = (J-1)/(N*J-J)
omega = (1+(N*g/(dfs*F+1)))/(N*g+1)
m = log(rscale) - 0.5*log(2*pi) - 1.5*log(g) - rscale^2/(2*g) - (J-1)/2*log(N*g+1) - (N*J-1)/2*log(omega)
exp(m)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.