Nothing
dbchoice <- function (formula, data, subset, na.action = na.omit, dist = "log-logistic", par = NULL, ...){
# argument "na.action" was added in June 2016
if (!inherits(formula, "Formula"))
formula <- Formula(formula)
# evaluating the formula and stops if the formula is not defined correctly
if (!inherits(formula, "formula")) stop("invalid formula")
# stop if the LHS does not contain two variables
if(length(formula[[2]]) != 3) stop("LHS variable in the formula must be like y1 + y2 ")
# checking the distribution
if(dist != "logistic" & dist != "log-logistic" & dist != "normal" & dist != "log-normal" & dist != "weibull"){
stop("'dist' is incorrect.")
}
# extracting explanatory variables (including the intercept) from the specified data frame
cl <- match.call() # a call to the function
if(missing(data)) stop("the name of the data frame object must be supplied in the 'data' argument")
mf <- match.call(expand.dots = TRUE)
# Revised in June 2016
# m <- match(c("formula", "data", "subset"), names(mf), 0L)
m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L)
mf <- mf[c(1L, m)]
mf$formula <- formula
mf[[1L]] <- as.name("model.frame")
mf <- eval(mf, parent.frame())
original.data <- data
data <- mf
# # removing observations with missing values
# na.num <- max(sum(as.numeric(is.na(data))))
# if(na.num != 0){
# d1 <- nrow(data)
# data <- na.omit(data)
# d2 <- nrow(data)
# warning(paste("Missing values detected.", d1 - d2, "rows are removed.", sep = " "))
# }
# defining the dependent variable
y1 <- model.part(formula, data = data, lhs = 1)[[1]] # yes/no to the first bid
y2 <- model.part(formula, data = data, lhs = 1)[[2]] # yes/no to the second bid
nobs <- length(y1)
# making dummy variables for the first and second bids
if(is.factor(y1)){ # when the yes/no variables are defined as factor
yy <- ifelse(y1 == "yes" & y2 == "yes", 1, 0)
yn <- ifelse(y1 == "yes" & y2 == "no", 1, 0)
ny <- ifelse(y1 == "no" & y2 == "yes", 1, 0)
nn <- ifelse(y1 == "no" & y2 == "no", 1, 0)
} else {
yy <- ifelse(y1 == 1 & y2 == 1, 1, 0)
yn <- ifelse(y1 == 1 & y2 == 0, 1, 0)
ny <- ifelse(y1 == 0 & y2 == 1, 1, 0)
nn <- ifelse(y1 == 0 & y2 == 0, 1, 0)
}
# Creating a design matrix
# Revised in June 2016
# bidf <- formula(formula, lhs = 0, rhs = 2)
# bid <- model.frame(bidf, data) # the first and the second stage bids
bid <- model.part(formula, data, lhs = 0, rhs = 2)
BID <- ifelse(bid[, 1] > bid[, 2], bid[, 2], bid[, 1])
yvar <- cbind(yy, yn, ny, nn) # yes/no to "bid"
# Revised in June 2016
# ff2 <- formula(formula, lhs = 0, rhs = 1)
# X <- model.frame(ff2, data)
# mmX <- model.matrix(ff2, X)
X <- model.part(formula, data, lhs = 0, rhs = 1)
mmX <- model.matrix(formula, data, lhs = 0, rhs = 1)
tmp.data <- data.frame(y1, mmX, BID)
# obtaining initial parameter values by logit model
if(is.null(par)){
f.stage <- glm(y1~. -1, family = binomial(link = "probit"), data = tmp.data)
ini <- f.stage$coefficients # saving initial values for ML estimation
npar <- length(ini)
ini[npar] <- ifelse(ini[npar] > 0, -ini[npar], ini[npar]) # gives a negative initial value for the bid coefficient
if (substr(dist, 1, 4) == "log-" | dist == "weibull") names(ini)[npar] <- "log(bid)"
names(ini)[1] <- "(Intercept)"
} else { # initial parameter values are supplied by the user
if(length(par) != ncol(tmp.data)-1) stop("the length of 'par' does not coincide with the number of explanatory variables.")
ini <- par
f.stage <- ini
}
if(dist == "logistic" | dist == "log-logistic"){
# likelihood function
dbLL <- function(param, dvar, ivar, bid){
yy <- dvar[, 1]
yn <- dvar[, 2]
ny <- dvar[, 3]
nn <- dvar[, 4]
X1 <- cbind(ivar, bid[, 1])
X2 <- cbind(ivar, bid[, 2])
ll <-
sum(plogis(-X2[yy == 1, ]%*%param, lower.tail = FALSE, log.p = TRUE)) +
sum(plogis(-X2[nn == 1, ]%*%param, lower.tail = TRUE, log.p = TRUE)) +
sum(log(plogis(-X2[yn == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE) -
plogis(-X1[yn == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE))) +
sum(log(plogis(-X1[ny == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE) -
plogis(-X2[ny == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE)))
ifelse(is.finite(ll), return(-ll), NaN)
}
} else if(dist == "normal" | dist == "log-normal") {
# likelihood function
dbLL <- function(param, dvar, ivar, bid){
yy <- dvar[, 1]
yn <- dvar[, 2]
ny <- dvar[, 3]
nn <- dvar[, 4]
X1 <- cbind(ivar, bid[, 1])
X2 <- cbind(ivar, bid[, 2])
ll <-
sum(pnorm(-X2[yy == 1, ]%*%param, lower.tail = FALSE, log.p = TRUE)) +
sum(pnorm(-X2[nn == 1, ]%*%param, lower.tail = TRUE, log.p = TRUE)) +
sum(log(pnorm(-X2[yn == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE) -
pnorm(-X1[yn == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE))) +
sum(log(pnorm(-X1[ny == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE) -
pnorm(-X2[ny == 1, ]%*%param, lower.tail = TRUE, log.p = FALSE)))
ifelse(is.finite(ll), return(-ll), NaN)
}
} else if(dist == "weibull"){
dbLL <- function(param, dvar, ivar, bid){
yy <- dvar[, 1]
yn <- dvar[, 2]
ny <- dvar[, 3]
nn <- dvar[, 4]
X1 <- cbind(ivar, bid[, 1])
X2 <- cbind(ivar, bid[, 2])
ll <-
sum(pweibull(exp(-X2[yy == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = FALSE, log.p = TRUE)) +
sum(pweibull(exp(-X2[nn == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = TRUE, log.p = TRUE)) +
sum(log(pweibull(exp(-X2[yn == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = TRUE, log.p = FALSE) -
pweibull(exp(-X1[yn == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = TRUE, log.p = FALSE))) +
sum(log(pweibull(exp(-X1[ny == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = TRUE, log.p = FALSE) -
pweibull(exp(-X2[ny == 1, , drop = FALSE]%*%param), shape = 1, lower.tail = TRUE, log.p = FALSE)))
ifelse(is.finite(ll), return(-ll), NaN)
}
}
# ML estimation of double-bounded dichotomous choice
suppressWarnings(
dbchoice <- optim(ini, fn = dbLL, method="BFGS", hessian = TRUE, dvar = yvar, ivar = mmX, bid = bid, control = list(abstol = 10^(-30)))
)
npar <- length(dbchoice$par)
terms <- terms(formula)
# Revised in June 2016
# fac <- which(attr(attr(X, "terms"), "dataClasses") == "factor")
fac <- which(sapply(X, is.factor) == TRUE)
xlevels <- as.list(fac)
j <- 0
for (i in fac) {
j <- j + 1
xlevels[[j]] <- levels(X[[i]])
}
contrasts <- attr(mmX, "contrasts")
# arranging outcomes into a single list variable
output <- list(
f.stage = f.stage, # the outcome of the initial estimation
dbchoice = dbchoice, # the outcome from the optimization
coefficients = dbchoice$par, # the coefficient estimates
call = cl, # the function call
formula = formula, # the defined model formula
Hessian = dbchoice$hessian, # the numerical Hessian at the estimates
distribution = dist, # the specified error distribution
loglik = -dbchoice$value, # log-likelihood at the estimates
convergence = ifelse(dbchoice$convergence == 0, TRUE, FALSE), # convergence status
niter = dbchoice$counts, # the number of iterations
nobs = nobs, # the number of observations
covariates = mmX, # a matrix of the covariates
bid = bid, # the suggested bid
yn = cbind(y1, y2), # the acceptance/rejection variable
data.name = data, # the data matrix
terms = terms,
contrasts = contrasts,
# Revised in June 2016
data = original.data,
xlevels = xlevels)
class(output) <- "dbchoice" # setting the object class
return(output)
}
# a function for summarizing the outputs
summary.dbchoice <- function(object, ...){
# obtaining necessary components from the object
coef <- object$coefficients
npar <- length(coef)
se <- sqrt(diag(solve(object$Hessian))) # standard errors of the estimates
# object$nobs <- nrow(object$covariates)
bid <- object$bid
X <- object$covariates
dist = object$distribution
# estimating the null model
# formula_null <- object$formula
formula_null <- formula(object$formula)
formula_null[[3]][[2]] <- 1
# Revised in June 2016
# db_null <- dbchoice(formula_null, data = eval(object$data.name), dist = dist, par = coef[c(1, npar)])
if (inherits(object, "oohbchoice")) {
db_null <- oohbchoice(formula_null, data = eval(object$data), dist = dist, par = coef[c(1, npar)])
} else {
db_null <- dbchoice(formula_null, data = eval(object$data), dist = dist, par = coef[c(1, npar)])
}
# function for obrtaining AIC and BIC
akaike <- function(loglik, npar, k ){
-2*loglik + k*npar
}
# computing various mean estimates for different error distributions
WTPs <- wtp(object = X, b = coef, bid = bid, dist = dist)
object$medianWTP <- WTPs$medianWTP
object$meanWTP <- WTPs$meanWTP
object$trunc.meanWTP <- WTPs$trunc.meanWTP
object$adj.trunc.meanWTP <- WTPs$adj.trunc.meanWTP
# computing pseudo-R^2
# object$psdR2 <- 1 - object$loglik/db_null$loglik
# names(object$psdR2) <- "pseudo-R^2 measure"
# object$adjpsdR2 <- 1 - (object$loglik - npar)/db_null$loglik
# names(object$adjpsdR2) <- "adjusted pseudo-R^2 measure"
# Likelihood Ratio Statistic
LR <- -2*(db_null$loglik - object$loglik)
d.f <- length(object$coefficients) - length(db_null$coefficients)
pvalLR <- pchisq(LR, df = d.f, lower.tail = FALSE)
object$LR.test <- c(LR, d.f, pvalLR)
# creating a table for coefficients, se, etc.
zstat <- coef/se # z statistics
pval <- round(2*pnorm(-abs(zstat)), 6) # p-value
coef <- cbind(coef, se, zstat, pval)
colnames(coef) <- c("Estimate", "Std. Error", "z value", "Pr(>|z|)")
object$coef <- coef
# computing AIC and BIC by the function AKAIKE
object$AIC <- akaike(object$loglik, npar, k = c(2, log(object$nobs)))
names(object$AIC) <- c("AIC", "BIC")
class(object) <- "summary.dbchoice"
return(object)
}
print.dbchoice <- function(x, digits = max(3, getOption("digits") - 1), ...){
if(!x$convergence) cat("The optimization did not converge\n")
cat("\nDistribution:", x$distribution, "\n", sep = " ")
print.default(format(x$coef, digits = digits), print.gap = 1, quote = FALSE)
invisible(x)
}
print.summary.dbchoice <- function(x, digits = max(3, getOption("digits") - 1), ...){
# what shall we do for Pearson residuals?
cat("\nCall:", deparse(x$call, width.cutoff = floor(getOption("width") * 0.85)), "", sep = "\n")
cat("Formula:", deparse(x$formula, width.cutoff = floor(getOption("width") * 0.85)), "", sep = "\n")
if(!x$convergence) cat("The optimization did not converge\n")
cat("Coefficients:", "\n")
#print.default(format(x$coef, digits = digits), print.gap = 2, quote = FALSE, right = TRUE)
printCoefmat(x$coef, digits = 4, dig.tst = 4) # printCoefmat() is defined in stats package
cat("\nDistribution:", x$distribution, "", sep = " ")
cat("\nNumber of Obs.:", formatC(x$nobs, digits = 0), "\n")
cat("Log-likelihood:", formatC(x$loglik, format="f", digits = digits), "\n")
# cat("pseudo-R^2:", formatC(x$psdR2, format="f", digits = 4),
# ", adjusted pseudo-R^2:", formatC(x$adjpsdR2, format="f", digits = 4), "")
cat("\nLR statistic:", formatC(x$LR.test[1], format="f", digits = 3), "on", formatC(x$LR.test[2], digits = 0),
"DF, p-value:", formatC(x$LR.test[3], format="f", digits = 3), "\n")
cat("AIC:", formatC(x$AIC[1], format="f", digits = digits), ", BIC:", formatC(x$AIC[2], format="f", digits = digits), "\n")
cat("\nIterations:", formatC(x$niter, digits = 0), "")
cat("\nConvergence:", x$convergence, "\n")
cat("\nWTP estimates:")
if(is.finite(x$meanWTP)){
cat("\n Mean :", x$meanWTP, "", sep = " ")
} else {
cat("\n Mean :", x$meanWTP, "(because of |beta_Lbid| < 1)", sep = " ")
}
cat("\n Mean :", x$trunc.meanWTP, "(truncated at the maximum bid)", sep = " ")
cat("\n Mean :", x$adj.trunc.meanWTP, "(truncated at the maximum bid with adjustment)", sep = " ")
cat("\n Median:", x$medianWTP, "\n", sep = " ")
}
######################################################################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.