Nothing
## This file contains:
## profile and confint methods for clm objects.
profile.clm <-
function(fitted, which.beta = seq_len(nbeta),
which.zeta = seq_len(nzeta), alpha = 0.001,
max.steps = 50, nsteps = 8, trace = FALSE,
step.warn = 5, control = list(), ...)
### match and tests arguments and dispatch to .zeta and .beta
### functions for the actual profiling.
### which.[beta, zeta] - numeric or character vectors.
### Works for models with nominal and scale effects and for any number
### of aliased coefs.
{
## match and test arguments:
if(any(is.na(diag(vcov(fitted)))))
stop("Cannot get profile when vcov(fitted) contains NAs", call.=FALSE)
stopifnot(is.numeric(alpha) && length(alpha) == 1 &&
alpha > 0 && alpha < 1)
stopifnot(round(max.steps) > round(nsteps))
stopifnot(round(nsteps) > round(step.warn))
stopifnot(round(nsteps) > 0 && round(step.warn) >= 0)
max.steps <- round(max.steps)
nsteps <- round(nsteps)
step.warn <- round(step.warn)
trace <- as.logical(trace)[1]
### BETA:
beta.names <- names(fitted$beta) ## possible beta
nbeta <- length(fitted$beta)
if(is.character(which.beta))
which.beta <- match(which.beta, beta.names, nomatch = 0)
## which.beta is a numeric vector
if(!all(which.beta %in% seq_len(nbeta)))
stop("invalid 'parm' argument")
### ZETA:
zeta.names <- names(fitted$zeta) ## possible zeta
nzeta <- length(fitted$zeta)
if(is.character(which.zeta))
which.zeta <- match(which.zeta, zeta.names, nomatch = 0)
## which.zeta is a numeric vector
if(!all(which.zeta %in% seq_len(nzeta)))
stop("invalid 'parm' argument")
## the actual profiling for beta and zeta par:
prof.beta <- if(nbeta)
profile.clm.beta(fitted, which.beta, alpha, max.steps, nsteps,
trace, step.warn, control, ...)
else NULL
prof.zeta <- if(nzeta)
profile.clm.zeta(fitted, which.zeta, alpha, max.steps, nsteps,
trace, step.warn, control, ...)
else NULL
## collect and return results:
val <- structure(c(prof.beta, prof.zeta), original.fit = fitted)
class(val) <- c("profile.clm")
return(val)
}
profile.clm.beta <-
function(fitted, which.beta, alpha = 0.001,
max.steps = 50, nsteps = 8, trace = FALSE,
step.warn = 5, control = list(), ...)
### which.beta is assumed to be a numeric vector
{
lroot.max <- qnorm(1 - alpha/2)
delta = lroot.max/nsteps
nbeta <- length(fitted$beta)
beta.names <- names(fitted$beta)
nalpha <- length(fitted$alpha)
orig.par <- c(fitted$alpha, fitted$beta)
if(!is.null(zeta <- fitted$zeta)) {
names(zeta) <- paste("sca", names(fitted$zeta), sep=".")
orig.par <- c(orig.par, zeta)
}
### NOTE: we need to update zeta.names to make names(orig.par)
### unique. This is needed to correctly construct the resulting
### par.vals matrix and to extract from it again.
std.err <- coef(summary(fitted))[nalpha + 1:nbeta, "Std. Error"]
if(any(is.na(std.err)))
stop("Cannot profile model where standard errors are NA",
call.=FALSE)
## results list:
prof.list <- vector("list", length = length(which.beta))
names(prof.list) <- beta.names[which.beta]
## get model matrices and model environment:
### NOTE: Fixing the fragile update approach:
## mf <- update(fitted, method = "model.frame")
## Need to subset by wts to make nrow(X) == nrow(B1)
## X <- with(mf, X[wts > 0, , drop=FALSE]) ## containing alias cols
wts <- getWeights(model.frame(fitted))
X <- model.matrix(fitted)$X[wts > 0, , drop=FALSE]
rho <- get_clmRho(fitted)
## rho <- update(fitted, doFit = FALSE)
orig <- as.list(rho)[c("B1", "B2", "o1", "o2")]
rho$n.psi <- rho$n.psi - 1 ## needed for models with scale
nalpha.clean <- sum(!fitted$aliased$alpha)
par.clean <- orig.par[!is.na(orig.par)]
## which of which.beta are NA:
alias.wb <- fitted$aliased$beta[which.beta]
## For each which.beta move up or down, fit the model and store the
## signed likelihood root statistic and parameter values:
for(wb in which.beta) {
if(alias.wb[wb == which.beta]) next ## ignore aliased coef
rem <- nalpha.clean +
(which.beta - cumsum(alias.wb))[wb == which.beta]
par.wb <- matrix(coef(fitted), nrow = 1) ## MLE
wb.name <- beta.names[wb]
lroot.wb <- 0 ## lroot at MLE
## set variables in fitting environment:
rho$B1 <- orig$B1[, -rem, drop=FALSE]
rho$B2 <- orig$B2[, -rem, drop=FALSE]
for(direction in c(-1, 1)) { ## move down or up
if(trace) {
message("\nParameter: ", wb.name,
c(" down", " up")[(direction + 1)/2 + 1])
utils::flush.console()
}
## reset starting values:
rho$par <- par.clean[-rem]
for(step in seq_len(max.steps)) {
## increment beta.i, offset and refit model without wb parameter:
beta.i <- fitted$beta[wb] +
direction * step * delta * std.err[wb]
new.off <- X[, 1+wb, drop=TRUE] * beta.i
rho$o1 <- orig$o1 - new.off
rho$o2 <- orig$o2 - new.off
fit <- clm.fit.NR(rho, control)
## save likelihood root statistic:
lroot <- -direction * sqrt(2*(fitted$logLik - fit$logLik))
## save lroot and pararameter values:
lroot.wb <- c(lroot.wb, lroot)
temp.par <- orig.par
temp.par[names(fit$par)] <- fit$par
temp.par[wb.name] <- beta.i
par.wb <- rbind(par.wb, temp.par)
## break for loop if profile is far enough:
if(abs(lroot) > lroot.max) break
} ## end 'step in seq_len(max.steps)'
## test that lroot.max is reached and enough steps are taken:
if(abs(lroot) < lroot.max)
warning("profile may be unreliable for ", wb.name,
" because lroot.max was not reached for ",
wb, c(" down", " up")[(direction + 1)/2 + 1])
if(step <= step.warn)
warning("profile may be unreliable for ", wb.name,
" because only ", step, "\n steps were taken ",
c("down", "up")[(direction + 1)/2 + 1])
} ## end 'direction in c(-1, 1)'
## order lroot and par values and collect in a data.frame:
lroot.order <- order(lroot.wb, decreasing = TRUE)
prof.list[[wb.name]] <-
structure(data.frame(lroot.wb[lroot.order]), names = "lroot")
prof.list[[wb.name]]$par.vals <- par.wb[lroot.order, ]
if(!all(diff(par.wb[lroot.order, wb.name]) > 0))
warning("likelihood is not monotonically decreasing from maximum,\n",
" so profile may be unreliable for ", wb.name)
} ## end 'wb in which.beta'
prof.list
}
profile.clm.zeta <-
function(fitted, which.zeta, alpha = 0.001,
max.steps = 50, nsteps = 8, trace = FALSE,
step.warn = 5, control = list(), ...)
### which.zeta is assumed to be a numeric vector
{
lroot.max <- qnorm(1 - alpha/2)
delta = lroot.max/nsteps
nzeta <- length(fitted$zeta)
nbeta <- length(fitted$beta)
zeta <- fitted$zeta
names(zeta) <- zeta.names <- paste("sca", names(fitted$zeta), sep=".")
### NOTE: we need to update zeta.names to make names(orig.par)
### unique. This is needed to correctly construct the resulting
### par.vals matrix and to extract from it again.
orig.par <- c(fitted$alpha, fitted$beta, zeta)
nalpha <- length(fitted$alpha)
std.err <- coef(summary(fitted))[nalpha+nbeta+1:nzeta, "Std. Error"]
if(any(is.na(std.err)))
stop("Cannot profile model where standard errors are NA",
call.=FALSE)
## results list:
prof.list <- vector("list", length = length(which.zeta))
names(prof.list) <- names(zeta)[which.zeta]
## get model environment:
rho <- get_clmRho(fitted)
## rho <- update(fitted, doFit = FALSE)
S <- rho$S ## S without intercept
Soff <- rho$Soff
rho$k <- max(0, rho$k - 1)
ab <- c(fitted$alpha, fitted$beta)
ab.clean <- ab[!is.na(ab)]
zeta.clean <- zeta[!fitted$aliased$zeta]
## which of which.zeta are NA:
alias.wz <- fitted$aliased$zeta[which.zeta]
## For each which.zeta move up or down, fit the model and store the
## signed likelihood root statistic and parameter values:
for(wz in which.zeta) {
if(alias.wz[wz]) next ## ignore aliased coef
## rem: which columns of S to remove
rem <- (which.zeta - cumsum(alias.wz))[wz]
par.wz <- matrix(coef(fitted), nrow = 1) ## MLE
wz.name <- zeta.names[wz]
lroot.wz <- 0 ## lroot at MLE
## set variables in fitting environment:
rho$S <- S[, -rem, drop=FALSE]
for(direction in c(-1, 1)) { ## move down or up
if(trace) {
message("\nParameter: ", wz.name,
c(" down", " up")[(direction + 1)/2 + 1])
utils::flush.console()
}
## reset starting values:
rho$par <- c(ab.clean, zeta.clean[-rem])
## rho$par <- coef(fitted, na.rm = TRUE)[-rem]
for(step in seq_len(max.steps)) {
## increment zeta.i, offset and refit model without wz parameter:
zeta.i <- zeta[wz] +
direction * step * delta * std.err[wz]
rho$Soff <- rho$sigma <- Soff * exp(S[, wz, drop=TRUE] * zeta.i)
### NOTE: Need to update sigma in addition to Soff since otherwise
### sigma isn't updated when k=0 (single scale par)
fit <- clm.fit.NR(rho, control)
## save likelihood root statistic:
lroot <- -direction * sqrt(2*(fitted$logLik - fit$logLik))
## save lroot and pararameter values:
lroot.wz <- c(lroot.wz, lroot)
temp.par <- orig.par
temp.par[names(fit$par)] <- fit$par
temp.par[wz.name] <- zeta.i
par.wz <- rbind(par.wz, temp.par)
## break for loop if profile is far enough:
if(abs(lroot) > lroot.max) break
} ## end 'step in seq_len(max.steps)'
## test that lroot.max is reached and enough steps are taken:
if(abs(lroot) < lroot.max)
warning("profile may be unreliable for ", wz.name,
" because qnorm(1 - alpha/2) was not reached when profiling ",
c(" down", " up")[(direction + 1)/2 + 1])
if(step <= step.warn)
warning("profile may be unreliable for ", wz.name,
" because only ", step, "\n steps were taken ",
c("down", "up")[(direction + 1)/2 + 1])
} ## end 'direction in c(-1, 1)'
## order lroot and par values and collect in a data.frame:
## lroot.order <- order(lroot.wz, decreasing = TRUE)
lroot.order <- order(par.wz[, wz.name], decreasing = FALSE)
### FIXME: Need to change how values are ordered here. We should order
### with par.wz[, wz.name] instead of lroot.wz since if lroot.wz is
### flat, the order may be incorrect.
prof.list[[wz.name]] <-
structure(data.frame(lroot.wz[lroot.order]), names = "lroot")
prof.list[[wz.name]]$par.vals <- par.wz[lroot.order, ]
if(!all(diff(lroot.wz[lroot.order]) <= sqrt(.Machine$double.eps)))
warning("likelihood is not monotonically decreasing from maximum,\n",
" so profile may be unreliable for ", wz.name)
} ## end 'wz in which.zeta'
prof.list
}
## profile.sclm <- ## using clm.fit.env()
## function(fitted, which.beta = seq_len(nbeta), alpha = 0.001,
## max.steps = 50, nsteps = 8, trace = FALSE,
## step.warn = 5, control = list(), ...)
## ### NOTE: seq_len(nbeta) works for nbeta = 0: numeric(0), while
## ### 1:nbeta gives c(1, 0).
##
## ### This is almost a copy of profile.clm2, which use clm.fit rather
## ### than clm.fit.env. The current implementation is the fastest, but
## ### possibly less readable.
## {
## ## match and test arguments:
## stopifnot(is.numeric(alpha) && length(alpha) == 1 &&
## alpha > 0 && alpha < 1)
## stopifnot(round(max.steps) > round(nsteps))
## stopifnot(round(nsteps) > round(step.warn))
## stopifnot(round(nsteps) > 0 && round(step.warn) >= 0)
## max.steps <- round(max.steps)
## nsteps <- round(nsteps)
## step.warn <- round(step.warn)
## trace <- as.logical(trace)[1]
## ## possible parameters on which to profile (including aliased coef):
## beta.names <- names(fitted$beta)
## nbeta <- length(fitted$beta)
## if(is.character(which.beta))
## which.beta <- match(which.beta, beta.names, nomatch = 0)
## ## which.beta is a numeric vector
## if(!all(which.beta %in% seq_len(nbeta)))
## stop("invalid 'parm' argument")
## stopifnot(length(which.beta) > 0)
## std.err <- coef(summary(fitted))[-(1:length(fitted$alpha)),
## "Std. Error"]
## ## profile limit:
## lroot.max <- qnorm(1 - alpha/2)
## ## profile step length:
## delta <- lroot.max / nsteps
## ## results list:
## prof.list <- vector("list", length = length(which.beta))
## names(prof.list) <- beta.names[which.beta]
## ## get model.frame:
## X <- update(fitted, method = "model.frame")$X ## containing alias cols
## rho <- update(fitted, doFit = FALSE)
## orig <- as.list(rho)[c("B1", "B2", "o1", "o2")]
## rho$n.psi <- rho$n.psi - 1
## nalpha.clean <- sum(!fitted$aliased$alpha)
## ## which of which.beta are NA:
## alias.wb <- fitted$aliased$beta[which.beta]
## ## For each which.beta move up or down, fit the model and store the
## ## signed likelihood root statistic and parameter values:
## for(wb in which.beta) {
## if(alias.wb[wb]) next ## ignore aliased coef
## rem <- nalpha.clean + (which.beta - cumsum(alias.wb))[wb]
## par.wb <- matrix(coef(fitted), nrow = 1) ## MLE
## wb.name <- beta.names[wb]
## lroot.wb <- 0 ## lroot at MLE
## ## set variables in fitting environment:
## rho$B1 <- orig$B1[, -rem, drop=FALSE]
## rho$B2 <- orig$B2[, -rem, drop=FALSE]
## for(direction in c(-1, 1)) { ## move down or up
## if(trace) {
## message("\nParameter: ", wb.name,
## c(" down", " up")[(direction + 1)/2 + 1])
## utils::flush.console()
## }
## ## reset starting values:
## rho$par <- coef(fitted, na.rm = TRUE)[-rem]
## ## rho$par <- orig.par[-wb.name]
## for(step in seq_len(max.steps)) {
## ## increment beta.i, offset and refit model without wb parameter:
## beta.i <- fitted$beta[wb] +
## direction * step * delta * std.err[wb]
## new.off <- X[, 1+wb, drop=TRUE] * beta.i
## rho$o1 <- orig$o1 - new.off
## rho$o2 <- orig$o2 - new.off
## fit <- clm.fit.env(rho, control)
## ## save likelihood root statistic:
## lroot <- -direction * sqrt(2*(fitted$logLik - fit$logLik))
## ## save lroot and pararameter values:
## lroot.wb <- c(lroot.wb, lroot)
## temp.par <- coef(fitted)
## temp.par[names(fit$par)] <- fit$par
## temp.par[wb.name] <- beta.i
## par.wb <- rbind(par.wb, temp.par)
## ## break for loop if profile is far enough:
## if(abs(lroot) > lroot.max) break
## } ## end 'step in seq_len(max.steps)'
## ## test that lroot.max is reached and enough steps are taken:
## if(abs(lroot) < lroot.max)
## warning("profile may be unreliable for ", wb.name,
## " because lroot.max was not reached for ",
## wb, c(" down", " up")[(direction + 1)/2 + 1])
## if(step <= step.warn)
## warning("profile may be unreliable for ", wb.name,
## " because only ", step, "\n steps were taken ",
## c("down", "up")[(direction + 1)/2 + 1])
## } ## end 'direction in c(-1, 1)'
## ## order lroot and par. values and collect in a data.frame:
## lroot.order <- order(lroot.wb, decreasing = TRUE)
## prof.list[[wb.name]] <-
## structure(data.frame(lroot.wb[lroot.order]), names = "lroot")
## prof.list[[wb.name]]$par.vals <- par.wb[lroot.order, ]
##
## if(!all(diff(par.wb[lroot.order, wb.name]) > 0))
## warning("likelihood is not monotonically decreasing from maximum,\n",
## " so profile may be unreliable for ", wb.name)
## } ## end 'wb in which.beta'
## val <- structure(prof.list, original.fit = fitted)
## class(val) <- c("profile.clm")
## return(val)
## }
format.perc <- function(probs, digits)
### function lifted from stats:::format.perc to avoid using ':::'
paste(format(100 * probs, trim = TRUE, scientific = FALSE,
digits = digits), "%")
confint.clm <-
function(object, parm, level = 0.95,
type = c("profile", "Wald"), trace = FALSE, ...)
### parm argument is ignored - use confint.profile for finer control.
{
## match and test arguments
type <- match.arg(type)
stopifnot(is.numeric(level) && length(level) == 1 &&
level > 0 && level < 1)
trace <- as.logical(trace)[1]
if(!(missing(parm) || is.null(parm)))
message("argument 'parm' ignored")
## Wald CI:
if(type == "Wald") {
a <- (1 - level)/2
a <- c(a, 1 - a)
pct <- format.perc(a, 3)
fac <- qnorm(a)
coefs <- coef(object)
ses <- coef(summary(object))[, 2]
ci <- array(NA, dim = c(length(coefs), 2L),
dimnames = list(names(coefs), pct))
ci[] <- coefs + ses %o% fac
return(ci)
}
## profile likelhood CI:
if(trace) {
message("Wait for profiling to be done...")
utils::flush.console()
}
## get profile:
object <- profile(object, alpha = (1 - level)/4, trace = trace, ...)
## get and return CIs:
confint(object, level = level, ...)
}
## confint.clm <-
## function(object, parm = seq_len(npar), level = 0.95,
## type = c("profile", "Wald"), trace = FALSE, ...)
## ### parm: a 2-list with beta and zeta?
## ### or args which.beta, which.zeta while parm is redundant?
##
## ### make waldci.clm(object, which.alpha, which.beta, which.zeta, level
## ### = 0.95) ??
## {
## ## match and test arguments
## type <- match.arg(type)
## stopifnot(is.numeric(level) && length(level) == 1 &&
## level > 0 && level < 1)
## trace <- as.logical(trace)[1]
## mle <- object$beta
## if(!is.null(zeta <- object$zeta)) {
## names(zeta) <- paste("sca", names(zeta), sep=".")
## mle <- c(mle, zeta)
## }
## npar <- length(mle)
## beta.names <- names(mle)
## if(is.character(parm)) stop("parm should be numeric")
## ## parm <- match(parm, names(c(object$beta, object$zeta))), nomatch = 0)
## if(!all(parm %in% seq_len(npar))) stop("invalid 'parm' argument")
## stopifnot(length(parm) > 0)
## ## Wald CI:
## if(type == "Wald")
## return(waldci.clm(object, parm, level))
## ## return(confint.default(object = object, parm = beta.names[parm],
## ## level = level))
## ## profile likelhood CI:
## if(trace) {
## message("Waiting for profiling to be done...")
## utils::flush.console()
## }
## ## get profile:
## ### Edit these calls:
## object <- profile(object, which.beta = beta.names[parm],
## alpha = (1 - level)/4, trace = trace, ...)
## ## get and return CIs:
## confint(object, parm = beta.names[parm], level = level, ...)
## }
confint.profile.clm <-
function(object, parm = seq_len(nprofiles), level = 0.95, ...)
### parm index elements of object (the list of profiles)
### each par.vals matrix of each profile will have
### sum(!unlist(of$aliased)) columns.
{
## match and test arguments:
stopifnot(is.numeric(level) && length(level) == 1 &&
level > 0 && level < 1)
of <- attr(object, "original.fit")
prof.names <- names(object)
nprofiles <- length(prof.names)
if(is.character(parm))
### Allow character here?
parm <- match(parm, prof.names, nomatch = 0)
if(!all(parm %in% seq_len(nprofiles)))
stop("invalid 'parm' argument")
stopifnot(length(parm) > 0)
## prepare CI:
a <- (1-level)/2
a <- c(a, 1-a)
pct <- paste(round(100*a, 1), "%")
ci <- array(NA, dim = c(length(parm), 2),
dimnames = list(prof.names[parm], pct))
cutoff <- qnorm(a)
## compute CI from spline interpolation of the likelihood profile:
for(pr.name in prof.names[parm]) {
if(is.null(pro <- object[[ pr.name ]])) next
sp <- spline(x = pro[, "par.vals"][, pr.name], y = pro[, 1]) ## OBS
ci[pr.name, ] <- approx(sp$y, sp$x, xout = rev(cutoff))$y
}
## do not drop(ci) because rownames are lost for single coef cases:
return(ci)
}
plot.profile.clm <-
function(x, which.par = seq_len(nprofiles), level = c(0.95, 0.99),
Log = FALSE, relative = TRUE, root = FALSE, fig = TRUE,
approx = root, n = 1e3,
ask = prod(par("mfcol")) < length(which.par) &&
dev.interactive(), ..., ylim = NULL)
{
## match and test arguments:
stopifnot(is.numeric(level) && all(level > 0) &&
all(level < 1))
stopifnot(n == round(n) && n > 0)
Log <- as.logical(Log)[1]
relative <- as.logical(relative)[1]
root <- as.logical(root)[1]
fig <- as.logical(fig)[1]
approx <- as.logical(approx)[1]
of <- attr(x, "original.fit")
mle <- of$beta
if(!is.null(zeta <- of$zeta)) {
names(zeta) <- paste("sca", names(zeta), sep=".")
mle <- c(mle, zeta)
}
prof.names <- names(x)
nprofiles <- length(prof.names)
if(is.character(which.par))
which.par <- match(which.par, prof.names, nomatch = 0)
if(!all(which.par %in% seq_len(nprofiles)))
stop("invalid 'which.par' argument")
stopifnot(length(which.par) > 0)
ML <- of$logLik
## prepare return value:
which.names <- prof.names[which.par]
spline.list <- vector("list", length(which.par))
names(spline.list) <- which.names
if(approx) {
std.err <- coef(summary(of))[-(1:length(of$alpha)), 2]
names(std.err) <- names(mle)
}
## aks before "over writing" the plot?
if(ask) {
oask <- devAskNewPage(TRUE)
on.exit(devAskNewPage(oask))
}
## for each pm make the appropriate plot:
for(pr.name in prof.names[which.par]) {
## confidence limits:
lim <- sapply(level, function(x)
exp(-qchisq(x, df=1)/2) )
if(is.null(pro <- x[[ pr.name ]])) next
sp <- spline(x=pro[, "par.vals"][, pr.name], y=pro[, 1], n=n)
if(approx) y.approx <- (mle[pr.name] - sp$x) / std.err[pr.name]
if(root) {
ylab <- "profile trace"
lim <- c(-1, 1) %o% sqrt(-2 * log(lim))
sp$y <- -sp$y
if(approx) y.approx <- -y.approx
} else { ## !root:
sp$y <- -sp$y^2/2
if(approx) y.approx <- -y.approx^2/2
if(relative && !Log) {
sp$y <- exp(sp$y)
if(approx) y.approx <- exp(y.approx)
ylab <- "Relative profile likelihood"
if(missing(ylim)) ylim <- c(0, 1)
}
if(relative && Log) {
ylab <- "Relative profile log-likelihood"
lim <- log(lim)
}
if(!relative && Log) {
sp$y <- sp$y + ML
if(approx) y.approx <- y.approx + ML
ylab <- "Profile log-likelihood"
lim <- ML + log(lim)
}
if(!relative && !Log) {
sp$y <- exp(sp$y + ML)
if(approx) y.approx <- exp(y.approx + ML)
ylab <- "Profile likelihood"
lim <- exp(ML + log(lim))
}
}
spline.list[[ pr.name ]] <- sp
if(fig) { ## do the plotting:
plot(sp$x, sp$y, type = "l", ylim = ylim,
xlab = pr.name, ylab = ylab, ...)
abline(h = lim)
if(approx) lines(sp$x, y.approx, lty = 2)
if(root) points(mle[pr.name], 0, pch = 3)
}
}
attr(spline.list, "limits") <- lim
invisible(spline.list)
}
profileAlt.clm <- ## using clm.fit()
function(fitted, which.beta = seq_len(nbeta), alpha = 0.01,
max.steps = 50, nsteps = 8, trace = FALSE,
step.warn = 5, control = list(), ...)
### NOTE: seq_len(nbeta) works for nbeta = 0: numeric(0), while
### 1:nbeta gives c(1, 0).
### args:
### alpha - The likelihood is profiled in the 100*(1-alpha)%
### confidence region as determined by the profile likelihood
### max.steps - the maximum number of profile steps in each direction
### nsteps - the approximate no. steps determined by the quadratic
### approximation to the log-likelihood function
### trace - if trace > 0 information of progress is printed
### step.warn - a warning is issued if the profile in each direction
### contains less than step.warn steps (due to lack of precision).
{
## match and test arguments:
stopifnot(is.numeric(alpha) && length(alpha) == 1 &&
alpha > 0 && alpha < 1)
stopifnot(round(max.steps) > round(nsteps))
stopifnot(round(nsteps) > round(step.warn))
stopifnot(round(nsteps) > 0 && round(step.warn) >= 0)
max.steps <- round(max.steps)
nsteps <- round(nsteps)
step.warn <- round(step.warn)
trace <- as.logical(trace)[1]
beta.names <- names(fitted$beta)
nbeta <- length(fitted$beta)
if(is.character(which.beta))
which.beta <- match(which.beta, beta.names, nomatch = 0)
if(!all(which.beta %in% seq_len(nbeta)))
stop("invalid 'parm' argument")
stopifnot(length(which.beta) > 0)
## Extract various things from the original fit:
orig.par <- coef(fitted) ## c(alpha, beta)
beta0 <- fitted$beta ## regression coef.
nalpha <- length(fitted$alpha) ## no. threshold coef.
nbeta <- length(beta0)
beta.names <- names(beta0)
orig.logLik <- fitted$logLik
std.err <- coef(summary(fitted))[-(1:nalpha), "Std. Error"]
link <- fitted$link
threshold <- fitted$threshold
## profile limit:
lroot.max <- qnorm(1 - alpha/2)
## profile step length:
delta <- lroot.max / nsteps
## results list:
prof.list <- vector("list", length = length(which.beta))
names(prof.list) <- beta.names[which.beta]
## get model.frame:
### NOTE: Attempting the following fix for a safer extraction of
### model-design-objects:
## mf <- update(fitted, method = "model.frame")
contr <- c(fitted$contrasts, fitted$S.contrasts, fitted$nom.contrasts)
mf <- get_clmDesign(fitted$model, fitted$terms.list, contr)
y <- mf$y
X <- mf$X
wts <- mf$wts
orig.off <- mf$off
## For each which.beta move up or down, fit the model and store the
## signed likelihood root statistic and parameter values:
for(wb in which.beta) {
par.wb <- matrix(orig.par, nrow = 1) ## MLE
wb.name <- beta.names[wb]
lroot.wb <- 0 ## lroot at MLE
X.wb <- X[, -(1+wb), drop=FALSE]
for(direction in c(-1, 1)) { ## move down or up
if(trace) {
message("\nParameter: ", wb.name,
c(" down", " up")[(direction + 1)/2 + 1])
utils::flush.console()
}
## (re)set starting values:
start <- orig.par[-(nalpha + wb)]
for(step in seq_len(max.steps)) {
## increment offset and refit model without wb parameter:
beta.i <- beta0[wb] + direction * step * delta * std.err[wb]
new.off <- orig.off + X[, 1+wb, drop=TRUE] * beta.i
fit <- clm.fit(y=y, X=X.wb,
weights=wts, offset=new.off,
control=control, start=start, link=link,
threshold=threshold)
## save likelihood root statistic:
lroot <- -direction * sqrt(2*(fitted$logLik - fit$logLik))
## save lroot and pararameter values:
lroot.wb <- c(lroot.wb, lroot)
temp.par <- orig.par
temp.par[names(fit$par)] <- fit$par
temp.par[wb.name] <- beta.i
par.wb <- rbind(par.wb, temp.par)
## update starting values:
start <- fit$par
## break for loop if profile is far enough:
if(abs(lroot) > lroot.max) break
} ## end 'step in seq_len(max.steps)'
## test that lroot.max is reached and enough steps are taken:
if(abs(lroot) < lroot.max)
warning("profile may be unreliable for ", wb.name,
" because lroot.max was not reached for ",
wb, c(" down", " up")[(direction + 1)/2 + 1])
if(step <= step.warn)
warning("profile may be unreliable for ", wb.name,
" because only ", step, "\n steps were taken ",
c("down", "up")[(direction + 1)/2 + 1])
} ## end 'direction in c(-1, 1)'
## order lroot and par. values and collect in a data.frame:
lroot.order <- order(lroot.wb, decreasing = TRUE)
prof.list[[wb.name]] <-
structure(data.frame(lroot.wb[lroot.order]), names = "lroot")
prof.list[[wb.name]]$par.vals <- par.wb[lroot.order, ]
if(!all(diff(par.wb[lroot.order, wb.name]) > 0))
warning("likelihood is not monotonically decreasing from maximum,\n",
" so profile may be unreliable for ", wb.name)
} ## end 'wb in which.beta'
val <- structure(prof.list, original.fit = fitted)
class(val) <- c("profile.clm")
return(val)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.