Nothing
## This file contains:
## Various utility functions.
setLinks <- function(rho, link) {
### The Aranda-Ordaz and log-gamma links are not supported in this
### version of clm.
rho$pfun <- switch(link,
logit = plogis,
probit = pnorm,
cloglog = function(x, lower.tail=TRUE) pgumbel(x,
lower.tail=lower.tail, max=FALSE),
cauchit = pcauchy,
loglog = pgumbel,
"Aranda-Ordaz" = function(x, lambda) pAO(x, lambda),
"log-gamma" = function(x, lambda) plgamma(x, lambda))
rho$dfun <- switch(link,
logit = dlogis,
probit = dnorm,
cloglog = function(x) dgumbel(x, max=FALSE),
cauchit = dcauchy,
loglog = dgumbel,
"Aranda-Ordaz" = function(x, lambda) dAO(x, lambda),
"log-gamma" = function(x, lambda) dlgamma(x, lambda))
rho$gfun <- switch(link,
logit = glogis,
probit = gnorm,
cloglog = function(x) ggumbel(x, max=FALSE),
loglog = ggumbel,
cauchit = gcauchy,
"Aranda-Ordaz" = function(x, lambda) gAO(x, lambda), ## shouldn't happen
"log-gamma" = function(x, lambda) glgamma(x, lambda)
)
rho$link <- link
}
makeThresholds <- function(y.levels, threshold) { ## , tJac) {
### Generate the threshold structure summarized in the transpose of
### the Jacobian matrix, tJac. Also generating nalpha and alpha.names.
### args:
### y - response variable, a factor
### threshold - one of "flexible", "symmetric" or "equidistant"
## stopifnot(is.factor(y))
lev <- y.levels
ntheta <- length(lev) - 1
## if(!is.null(tJac)) {
## stopifnot(nrow(tJac) == ntheta)
## nalpha <- ncol(tJac)
## alpha.names <- colnames(tJac)
## if(is.null(alpha.names) || anyDuplicated(alpha.names))
## alpha.names <- as.character(1:nalpha)
## dimnames(tJac) <- NULL
## }
## else { ## threshold structure identified by threshold argument:
if(threshold == "flexible") {
tJac <- diag(ntheta)
nalpha <- ntheta
alpha.names <- paste(lev[-length(lev)], lev[-1], sep="|")
}
if(threshold == "symmetric") {
if(!ntheta >=2)
stop("symmetric thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
if(ntheta %% 2) { ## ntheta is odd
nalpha <- (ntheta + 1)/2 ## No. threshold parameters
tJac <- t(cbind(diag(-1, nalpha)[nalpha:1, 1:(nalpha-1)],
diag(nalpha)))
tJac[,1] <- 1
alpha.names <-
c("central", paste("spacing.", 1:(nalpha-1), sep=""))
}
else { ## ntheta is even
nalpha <- (ntheta + 2)/2
tJac <- cbind(rep(1:0, each = ntheta / 2),
rbind(diag(-1, ntheta / 2)[(ntheta / 2):1,],
diag(ntheta / 2)))
tJac[,2] <- rep(0:1, each = ntheta / 2)
alpha.names <- c("central.1", "central.2",
paste("spacing.", 1:(nalpha-2), sep=""))
}
}
## Assumes latent mean is zero:
if(threshold == "symmetric2") {
if(!ntheta >=2)
stop("symmetric thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
if(ntheta %% 2) { ## ntheta is odd
nalpha <- (ntheta - 1)/2 ## No. threshold parameters
tJac <- rbind(apply(-diag(nalpha), 1, rev),
rep(0, nalpha),
diag(nalpha))
}
else { ## ntheta is even
nalpha <- ntheta/2
tJac <- rbind(apply(-diag(nalpha), 1, rev),
diag(nalpha))
}
alpha.names <- paste("spacing.", 1:nalpha, sep="")
}
if(threshold == "equidistant") {
if(!ntheta >=2)
stop("equidistant thresholds are only meaningful for responses with 3 or more levels",
call.=FALSE)
tJac <- cbind(1, 0:(ntheta-1))
nalpha <- 2
alpha.names <- c("threshold.1", "spacing")
}
## }
return(list(tJac = tJac, nalpha = nalpha, alpha.names = alpha.names))
}
getFitted <- function(eta1, eta2, pfun, ...) {
## eta1, eta2: linear predictors
## pfun: cumulative distribution function
##
## Compute fitted values while maintaining high precision in the
## result - if eta1 and eta2 are both large, fitted is the
## difference between two numbers very close to 1, which leads to
## imprecision and potentially errors.
##
## Note that (eta1 > eta2) always holds, hence (eta2 > 0) happens
## relatively rarely.
k2 <- eta2 > 0
fitted <- pfun(eta1) - pfun(eta2)
fitted[k2] <- pfun(eta2[k2], lower.tail=FALSE) -
pfun(eta1[k2], lower.tail=FALSE)
fitted
}
getFittedC <-
function(eta1, eta2,
link = c("logit", "probit", "cloglog", "loglog", "cauchit",
"Aranda-Ordaz", "log-gamma"), lambda=1)
### Same as getFitted only this is implemented in C and handles all
### link functions including the flexible ones.
{
link <- match.arg(link)
.Call("get_fitted", eta1, eta2, link, lambda)
}
getWeights <- function(mf) {
### mf - model.frame
n <- nrow(mf)
if(is.null(wts <- model.weights(mf))) wts <- rep(1, n)
## if (any(wts <= 0))
## stop(gettextf("non-positive weights are not allowed"),
## call.=FALSE)
### NOTE: We do not remove observations where weights == 0, because
### that could be a somewhat surprising behaviour. It would also
### require that the model.frame be evaluated all over again to get
### the right response vector with the right number of levels.
if(length(wts) && length(wts) != n)
stop(gettextf("number of weights is %d should equal %d (number of observations)",
length(wts), n), call.=FALSE)
if(any(wts < 0))
stop(gettextf("negative weights are not allowed"),
call.=FALSE)
## if(any(wts == 0)) {
## y <- model.response(mf, "any")
## if(any(table(y[wts > 0]) == 0))
## stop(gettextf("zero positive weights for one or more response categories"),
## call.=FALSE)
## }
return(as.double(wts))
}
getOffset <- function(mf, terms) {
### mf - model.frame
n <- nrow(mf)
off <- rep(0, n)
if(!is.null(o <- attr(terms, "offset"))) {
if(length(o) > 1)
stop("only one offset term allowed in each formula", call.=FALSE)
varnm <- attr(terms, "variables")
## deparse all variable names - character vector:
varnm <- unlist(lapply(as.list(varnm), deparse)[-1])
off <- mf[, varnm[o]]
}
## off <- as.vector(mf[, o])
if(length(off) && length(off) != n)
stop(gettextf("number of offsets is %d should equal %d (number of observations)",
length(off), n), call.=FALSE)
return(as.double(off))
}
getOffsetStd <- function(mf) {
n <- nrow(mf)
if(is.null(off <- model.offset(mf))) off <- rep(0, n)
if(length(off) && length(off) != n)
stop(gettextf("number of offsets is %d should equal %d (number of observations)",
length(off), n), call.=FALSE)
return(as.double(off))
}
getFullForm <- function(form, ..., envir=parent.frame()) {
### collect terms in several formulas in a single formula
### sets the environment of the resulting formula to envir.
forms <- list(...)
if(lf <- length(forms)) {
rhs <- character(0)
## Collect rhs terms in a single vector of rh-sides:
for(i in 1:lf) {
rhs <- c(rhs, Deparse(forms[[i]][[2]]))
if(length(forms[[i]]) >= 3)
rhs <- c(rhs, Deparse(forms[[i]][[3]]))
}
## add '+' inbetween terms:
rhs <- paste(rhs, collapse=" + ")
## combine if 'deparse(form)' is a (long) vector:
form2 <- paste(deparse(form, width.cutoff=500L), collapse=" ")
## combine form2 and rhs into a single string:
form <- paste(form2, rhs, sep=" + ")
}
return(as.formula(form, env=envir))
}
## getFullForm <- function(form, ..., envir=parent.frame()) {
## ### collect terms in several formulas in a single formula (on the rhs)
## ### sets the environment of the resulting formula to envir.
## forms <- list(form, ...)
## allVars <- unlist(sapply(forms, all.vars))
## rhs <- paste(allVars, collapse=" + ")
## form <- paste("~", rhs)
## return(as.formula(form, env=envir))
## }
## getCtrlArgs <- function(control, extras) {
## ### Recover control arguments from clmm.control and extras (...):
## ###
## ## Collect control arguments in list:
## ctrl.args <- c(extras, control$method, control$useMatrix,
## control$ctrl, control$optCtrl)
## ## Identify the two occurences "trace", delete them, and add trace=1
## ## or trace=-1 to the list of arguments:
## which.trace <- which(names(ctrl.args) == "trace")
## trace.sum <- sum(unlist(ctrl.args[which.trace]))
## ctrl.args <- ctrl.args[-which.trace]
## ## remove duplicated arguments:
## ctrl.args <- ctrl.args[!duplicated(names(ctrl.args))]
## if(trace.sum >= 1) ctrl.args$trace <- 1
## if(trace.sum >= 2 || trace.sum <= -1) ctrl.args$trace <- -1
## ## return the updated list of control parameters:
## do.call("clmm.control", ctrl.args)
## }
getCtrlArgs <- function(control, extras) {
### Recover control arguments from clmm.control and extras (...):
###
if(!is.list(control))
stop("'control' should be a list")
## Collect control arguments in list:
## 1) assuming 'control' is a call to clmm.control:
ctrl.args <-
if(setequal(names(control), names(clmm.control())))
c(extras, control["method"], control["useMatrix"],
control$ctrl, control$optCtrl)
## assuming 'control' is specified with control=list( 'args'):
else
c(extras, control)
### NOTE: having c(extras, control) rather than c(control, extras)
### means that extras have precedence over control.
## Identify the two occurences "trace", delete them, and add trace=1
## or trace=-1 to the list of arguments:
which.trace <- which(names(ctrl.args) == "trace")
trace.sum <- sum(unlist(ctrl.args[which.trace]))
if(trace.sum)
ctrl.args <- ctrl.args[-which.trace]
## remove duplicated arguments:
ctrl.args <- ctrl.args[!duplicated(names(ctrl.args))]
if(trace.sum >= 1) ctrl.args$trace <- 1
if(trace.sum >= 2 || trace.sum <= -1) ctrl.args$trace <- -1
## return the updated list of control parameters:
do.call("clmm.control", ctrl.args)
}
Trace <- function(iter, stepFactor, val, maxGrad, par, first=FALSE) {
t1 <- sprintf(" %3d: %-5e: %.3f: %1.3e: ",
iter, stepFactor, val, maxGrad)
t2 <- formatC(par)
if(first)
cat("iter: step factor: Value: max|grad|: Parameters:\n")
cat(t1, t2, "\n")
}
response.name <- function(terms) {
vars <- as.character(attr(terms, "variables"))
vars[1 + attr(terms, "response")]
}
getB <- function(y, NOM=NULL, X=NULL, offset=NULL, tJac=NULL) {
### FIXME: Is this function ever used?
### NOTE: no tests that arguments conform.
nlev <- nlevels(y)
n <- length(y)
B2 <- 1 * (col(matrix(0, n, nlev)) == c(unclass(y)))
o1 <- c(1e5 * B2[, nlev]) - offset
o2 <- c(-1e5 * B2[,1]) - offset
B1 <- B2[, -(nlev), drop = FALSE]
B2 <- B2[, -1, drop = FALSE]
## adjust B1 and B2 for structured thresholds:
if(!is.null(tJac)) {
B1 <- B1 %*% tJac
B2 <- B2 %*% tJac
}
## update B1 and B2 with nominal effects:
if(NCOL(NOM) > 1) { ## !is.null(NOM) && ncol(NOM) > 1) {
## if !is.null(NOM) and NOM is more than an intercept:
LL1 <- lapply(1:ncol(NOM), function(x) B1 * NOM[,x])
B1 <- do.call(cbind, LL1)
LL2 <- lapply(1:ncol(NOM), function(x) B2 * NOM[,x])
B2 <- do.call(cbind, LL2)
}
## update B1 and B2 with location effects (X):
nbeta <- NCOL(X) - 1
if(NCOL(X) > 1) {
B1 <- cbind(B1, -X[, -1, drop = FALSE])
B2 <- cbind(B2, -X[, -1, drop = FALSE])
}
dimnames(B1) <- NULL
dimnames(B2) <- NULL
namedList(B1, B2, o1, o2)
}
Deparse <-
function(expr, width.cutoff = 500L, backtick = mode(expr) %in%
c("call", "expression", "(", "function"),
control = c("keepInteger", "showAttributes", "keepNA"),
nlines = -1L)
### FIXME: test if formals(Deparse) == formals(deparse)??
deparse(expr=expr, width.cutoff= width.cutoff, backtick=backtick,
control=control, nlines=nlines)
getContrasts <- function(terms, contrasts) {
if(is.null(contrasts)) return(NULL)
term.labels <- attr(terms, "term.labels")
contrasts[names(contrasts) %in% term.labels]
}
checkContrasts <- function(terms, contrasts) {
### Check that contrasts are not specified for absent factors and warn
### about them
term.labels <- attr(terms, "term.labels")
nm.contr <- names(contrasts)
notkeep <- nm.contr[!nm.contr %in% term.labels]
msg <-
if(length(notkeep) > 2)
"variables '%s' are absent: their contrasts will be ignored"
else "variable '%s' is absent: its contrasts will be ignored"
if(length(notkeep))
warning(gettextf(msg, paste(notkeep, collapse=", ")),
call.=FALSE)
invisible()
}
get_clmInfoTab <- function(object, ...) {
names <- c("link", "threshold", "nobs", "logLik", "edf", "niter",
"maxGradient", "cond.H")
stopifnot(all(names %in% names(object)))
info <- with(object, {
data.frame("link" = link,
"threshold" = threshold,
"nobs" = nobs,
"logLik" = formatC(logLik, digits=2, format="f"),
"AIC" = formatC(-2*logLik + 2*edf, digits=2,
format="f"),
"niter" = paste(niter[1], "(", niter[2], ")", sep=""),
### NOTE: iterations to get starting values for scale models *are*
### included here.
"max.grad" = formatC(maxGradient, digits=2,
format="e"),
"cond.H" = formatC(cond.H, digits=1, format="e")
## BIC is not part of output since it is not clear what
## the no. observations are.
)
})
info
}
format_tJac <- function(tJac, y.levels, alpha.names) {
lev <- y.levels
rownames(tJac) <- paste(lev[-length(lev)], lev[-1], sep="|")
colnames(tJac) <- alpha.names
tJac
}
extractFromFrames <- function(frames, fullmf) {
lst <- list(y.levels=frames$y.levels,
na.action=attr(fullmf, "na.action"),
tJac=format_tJac(frames))
lstX <- list(contrasts=attr(frames$X, "contrasts"), terms=frames$terms,
xlevels=.getXlevels(frames$terms, fullmf))
lst <- c(lst, lstX)
if(!is.null(frames[["S"]]))
lst <- c(lst, list(S.contrasts=attr(frames$S, "contrasts"),
S.terms=frames$S.terms,
S.xlevels=.getXlevels(frames$S.terms, fullmf)))
if(!is.null(frames[["NOM"]]))
lst <- c(lst, list(nom.contrasts=attr(frames$NOM, "contrasts"),
nom.terms=frames$nom.terms,
nom.xlevels=.getXlevels(frames$nom.terms, fullmf)))
lst
}
formatTheta <- function(alpha, tJac, x) {
## x: alpha, tJac, nom.terms, NOM, nom.contrasts, nom.xlevels,
Theta.ok <- TRUE
if(is.null(x[["NOM"]])) { ## no nominal effects
Theta <- alpha %*% t(tJac)
colnames(Theta) <- rownames(tJac)
return(namedList(Theta, Theta.ok))
}
x$nom.assign <- attr(x$NOM, "assign")
args <- c("nom.terms", "nom.assign")
args <- c("nom.terms")
if(any(sapply(args, function(txt) is.null(x[[txt]])))) {
## Nominal effects, but we cannot compute Theta
warning("Cannot assess if all thresholds are increasing",
call.=FALSE)
return(namedList(Theta.ok))
}
## Get matrix of thresholds; Theta:
Theta.list <-
getThetamat(terms=x$nom.terms,
alpha=alpha,
assign=attr(x$NOM, "assign"),
contrasts=x$nom.contrasts,
tJac=tJac,
xlevels=x$nom.xlevels)
## Test that (finite) thresholds are increasing:
if(all(is.finite(unlist(Theta.list$Theta)))) {
th.increasing <- apply(Theta.list$Theta, 1, function(th)
all(diff(th) >= 0))
if(!all(th.increasing))
Theta.ok <- FALSE
}
Theta <- if(length(Theta.list) == 2)
with(Theta.list, cbind(mf.basic, Theta)) else Theta.list$Theta
alpha.mat <- matrix(alpha, ncol=ncol(tJac), byrow=TRUE)
colnames(alpha.mat) <- colnames(tJac)
rownames(alpha.mat) <- attr(x$NOM, "orig.colnames")
## Return
namedList(Theta, alpha.mat, Theta.ok)
}
## We don't need this function anymore since the terms objects now
## always contain dataClasses and predvars attributes.
## get_dataClasses <- function(mf) {
## if(!is.null(Terms <- attr(mf, "terms")) &&
## !is.null(dataCl <- attr(Terms, "dataClasses")))
## return(dataCl)
## sapply(mf, .MFclass)
## }
## Returns a named list, where the names are the deparsed actual
## arguments:
namedList <- function(...) {
setNames(list(...), nm=sapply(as.list(match.call()), deparse)[-1])
}
## a <- 1
## b <- 2
## c <- 3
## d <- list(e=2, f=factor(letters[rep(1:2, 2)]))
## g <- matrix(runif(9), 3)
##
## namedList(a, b, c)
## namedList(a, b, c, d, g)
##
## res <- namedList(d, g)
## names(res)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.