Nothing
## Mean Group estimator
## ref. Coakley, Fuertes and Smith 2004
##
## This version 10:
## added R2 = 1-var(resid)/var(y) as a measure of fit
## from version 9:
## fixed residuals
## output matrix of individual coefficients as 'indcoef' aptly named
## NB the effect of including a trend is exactly the same as for
## including as.numeric(<timeindex>) in the model specification
## Yet it is cleaner unless some automatic treatment of group invariant
## variates is added for the CCE case (where else any group invariant
## becomes perfectly collinear with the ybar, Xbar and gives NAs in coefs.
## Moreover, if the panel is unbalanced then for some i the trend becomes
## (3,4,5, ...) instead of (1,2,3, ...); the difference is absorbed by
## the individual intercept, and *the group intercept* changes.
## TODO: see last point above: treatment of invariants
## TODO: see how to estimate the intercept in cmg, dmg
## TODO: manage models without intercept in cmg, dmg
## TODO: output single coefs (see how the structure of pvcm is)
## needed for standalone operation:
#plm <- plm:::plm
#pdim <- plm:::pdim
#model.matrix.plm <- plm:::model.matrix.plm
#pmodel.response <- plm:::pmodel.response.plm
#' Mean Groups (MG), Demeaned MG and CCE MG estimators
#'
#' Mean Groups (MG), Demeaned MG (DMG) and Common Correlated Effects
#' MG (CCEMG) estimators for heterogeneous panel models, possibly with
#' common factors (CCEMG)
#'
#' `pmg` is a function for the estimation of linear panel models with
#' heterogeneous coefficients by various Mean Groups estimators. Setting
#' argument `model = "mg"` specifies the standard Mean Groups estimator, based on the
#' average of individual time series regressions. If `model = "dmg"`
#' the data are demeaned cross-sectionally, which is believed to
#' reduce the influence of common factors (and is akin to what is done
#' in homogeneous panels when `model = "within"` and `effect = "time"`).
#' Lastly, if `model = "cmg"` the CCEMG estimator is
#' employed which is consistent under the hypothesis of
#' unobserved common factors and idiosyncratic factor loadings; it
#' works by augmenting the model by cross-sectional averages of the
#' dependent variable and regressors in order to account for the
#' common factors, and adding individual intercepts and possibly
#' trends.
#'
#' @aliases pmg
#' @param formula a symbolic description of the model to be estimated,
#' @param object,x an object of class `pmg`,
#' @param data a `data.frame`,
#' @param subset see [lm()],
#' @param na.action see [lm()],
#' @param model one of `"mg"`, `"cmg"`, or `"dmg"`,
#' @param index the indexes, see [pdata.frame()],
#' @param trend logical specifying whether an individual-specific
#' trend has to be included,
#' @param digits digits,
#' @param width the maximum length of the lines in the print output,
#' @param \dots further arguments.
#'
#' @return An object of class `c("pmg", "panelmodel")` containing:
#' \item{coefficients}{the vector of coefficients,}
#' \item{residuals}{the vector of residuals,}
#' \item{fitted.values}{the vector of fitted values,}
#' \item{vcov}{the covariance matrix of the coefficients,}
#' \item{df.residual}{degrees of freedom of the residuals,}
#' \item{model}{a data.frame containing the variables used for the
#' estimation,}
#' \item{r.squared}{numeric, the R squared,}
#' \item{call}{the call,}
#' \item{indcoef}{the matrix of individual coefficients from
#' separate time series regressions.}
#' @export
#' @author Giovanni Millo
#' @references
#'
#' \insertRef{PESA:06}{plm}
#'
#' @keywords regression
#' @examples
#' data("Produc", package = "plm")
#' ## Mean Groups estimator
#' mgmod <- pmg(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc)
#' summary(mgmod)
#'
#' ## demeaned Mean Groups
#' dmgmod <- pmg(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, model = "dmg")
#' summary(dmgmod)
#'
#' ## Common Correlated Effects Mean Groups
#' ccemgmod <- pmg(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#' data = Produc, model = "cmg")
#' summary(ccemgmod)
pmg <- function(formula, data, subset, na.action,
model = c("mg", "cmg", "dmg"), index = NULL,
trend = FALSE, ...) {
## same as pggls but for effect, fixed at "individual" for compatibility
## ind for id, tind for time, k for K, coefnam for coef.names
effect <- "individual"
## record call etc.
model <- match.arg(model)
model.name <- model
data.name <- paste(deparse(substitute(data)))
cl <- match.call()
plm.model <- match.call(expand.dots = FALSE)
m <- match(c("formula", "data", "subset", "na.action", "effect",
"model", "index"), names(plm.model), 0)
plm.model <- plm.model[c(1L, m)]
plm.model[[1L]] <- as.name("plm")
## change the 'model' in call
plm.model$model <- "pooling"
## evaluates the call, modified with model = "pooling", inside the
## parent frame resulting in the pooling model on formula, data
plm.model <- eval(plm.model, parent.frame())
index <- unclass(attr(model.frame(plm.model), "index")) # unclass for speed
ind <- index[[1L]] ## individual index
tind <- index[[2L]] ## time index
## set dimension variables
pdim <- pdim(plm.model)
balanced <- pdim$balanced
nt <- pdim$Tint$nt
Ti <- pdim$Tint$Ti
T. <- pdim$nT$T
n <- pdim$nT$n
N <- pdim$nT$N
## set index names
time.names <- pdim$panel.names$time.names
id.names <- pdim$panel.names$id.names
coef.names <- names(coef(plm.model))
## number of coefficients
k <- length(coef.names)
## model data
X <- model.matrix(plm.model)
y <- model.response(model.frame(plm.model))
## det. *minimum* group numerosity
t <- min(Ti) # == min(tapply(X[ , 1], ind, length))
## check min. t numerosity
## NB it is also possible to allow estimation if there *is* one group
## with t large enough and average on coefficients removing NAs
## Here we choose the explicit way: let estimation fail if we lose df
## but a warning would do...
if(t < (k+1)) stop("Insufficient number of time periods")
## one regression for each group i in 1..n
## and retrieve coefficients putting them into a matrix
## (might be unbalanced => t1!=t2 but we don't care as long
## as min(t)>k+1)
## "pre-allocate" coefficients matrix for the n models
kt <- if (trend) 1L else 0L
tcoef <- matrix(data = NA_real_, nrow = k+kt, ncol = n)
tres <- vector("list", n)
switch(model,
"mg" = {
## for each x-sect. i = 1..n
unind <- unique(ind)
for(i in 1:n) {
tX <- X[ind == unind[i], ]
ty <- y[ind == unind[i]]
if(trend) tX <- cbind(tX, 1:(dim(tX)[[1L]]))
tfit <- lm.fit(tX, ty)
tcoef[ , i] <- tfit$coefficients
tres[[i]] <- tfit$residuals
}
## 'trend' always comes last
if(trend) coef.names <- c(coef.names, "trend")
## adjust k
k <- length(coef.names)
},
"cmg" = {
## between-periods transformation (take means over groups for each t)
Xm <- Between(X, effect = "time", na.rm = TRUE)
ym <- as.numeric(Between(y, effect = "time", na.rm = TRUE))
augX <- cbind(X, ym, Xm[ , -1L, drop = FALSE])
## allow for extended coef vector
tcoef0 <- matrix(data = NA_real_, nrow = 2*k+kt, ncol = n)
## for each x-sect. i = 1..n estimate (over t) an augmented model
## y_it = alpha_i + beta_i*X_it + c1_i*my_t + c2_i*mX_t + err_it
unind <- unique(ind)
for(i in 1:n) {
taugX <- augX[ind == unind[i], ] # TODO: check if this kind of extractions need drop = FALSE for corner cases
ty <- y[ind == unind[i]]
if(trend) taugX <- cbind(taugX, 1:(dim(taugX)[[1L]]))
tfit <- lm.fit(taugX, ty)
tcoef0[ , i] <- tfit$coefficients
tres[[i]] <- tfit$residuals
}
tcoef <- tcoef0[1:k, ]
tcoef.bar <- tcoef0[-(1:k), ]
coef.names.bar <- c("y.bar", paste(coef.names[-1L], ".bar", sep=""))
## 'trend' always comes last
if(trend) coef.names.bar <- c(coef.names.bar, "trend")
## output complete coefs
tcoef <- tcoef0
coef.names <- c(coef.names, coef.names.bar)
## adjust k
k <- length(coef.names)
## TODO: adjust model formula etc. (else breaks waldtest, update, ...)
},
"dmg" = {
## time-demean
demX <- Within(X, effect = "time", na.rm = TRUE)
demX[ , 1L] <- 1 # put back intercept lost by within transformation
demy <- as.numeric(Within(y, effect = "time", na.rm = TRUE))
## for each x-sect. i=1..n estimate (over t) a demeaned model
## (y_it-my_t) = alpha_i + beta_i*(X_it-mX_t) + err_it
unind <- unique(ind)
for (i in 1:n) {
tdemX <- demX[ind == unind[i], ]
tdemy <- demy[ind == unind[i]]
if(trend) tdemX <- cbind(tdemX, 1:(dim(tdemX)[[1L]]))
tfit <- lm.fit(tdemX, tdemy)
tcoef[ , i] <- tfit$coefficients
tres[[i]] <- tfit$residuals
}
## 'trend' always comes last
if(trend) coef.names <- c(coef.names, "trend")
## adjust k
k <- length(coef.names)
})
## coefs are averages across individual regressions
coef <- rowMeans(tcoef) # == apply(tcoef, 1, mean)
## make matrix of cross-products of demeaned individual coefficients
coefmat <- array(data = NA_real_, dim = c(k, k, n))
demcoef <- tcoef - coef # gets recycled n times by column
for (i in 1:n) coefmat[ , , i] <- outer(demcoef[ , i], demcoef[ , i])
## summing over the n-dimension of the array we get the
## covariance matrix of coefs
vcov <- rowSums(coefmat, dims = 2L) / (n*(n-1)) # == apply(coefmat, 1:2, sum) / (n*(n-1)) but rowSums(., dims = 2L)-construct is way faster
######### na.omit = T in apply was the big problem!!
## code as in pggls, only difference is here there is no 'sigma'
residuals <- unlist(tres)
##was: as.vector(y) - as.vector(crossprod(t(X), coef[1:(dim(X)[[2]])]))
df.residual <- nrow(X) - ncol(X)
fitted.values <- y - residuals
## R2 as 1-var(res)/var(y);
## originally (HPY 3.14) adjusted by *(T.-1)/(T.-2*k0-2)
## but here k has expanded to include ybar, Xbar, (trend)
r2 <- 1-var(residuals)/var(y)*(T.-1)/(T.-k-1)
names(coef) <- rownames(vcov) <- colnames(vcov) <- coef.names
dimnames(tcoef) <- list(coef.names, id.names)
pmodel <- attr(plm.model, "pmodel")
pmodel$model.name <- model.name
mgmod <- list(coefficients = coef,
residuals = residuals,
fitted.values = fitted.values,
vcov = vcov,
df.residual = df.residual,
r.squared = r2,
model = model.frame(plm.model),
indcoef = tcoef,
formula = formula,
call = cl)
mgmod <- structure(mgmod, pdim = pdim, pmodel = pmodel)
class(mgmod) <- c("pmg", "panelmodel")
mgmod
}
#' @rdname pmg
#' @export
summary.pmg <- function(object, ...){
pmodel <- attr(object, "pmodel")
std.err <- sqrt(diag(object$vcov))
b <- object$coefficients
z <- b/std.err
p <- 2*pnorm(abs(z), lower.tail = FALSE)
CoefTable <- cbind(b, std.err, z, p)
colnames(CoefTable) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)")
object$CoefTable <- CoefTable
y <- object$model[[1L]]
object$tss <- tss(y)
object$ssr <- as.numeric(crossprod(residuals(object)))
object$rsqr <- 1-object$ssr/object$tss
class(object) <- c("summary.pmg")
return(object)
}
#' @rdname pmg
#' @export
print.summary.pmg <- function(x, digits = max(3, getOption("digits") - 2),
width = getOption("width"), ...){
pmodel <- attr(x, "pmodel")
pdim <- attr(x, "pdim")
# formula <- pmodel$formula
model.name <- pmodel$model.name
cat(paste(model.pmg.list[model.name], "\n", sep=""))
cat("\nCall:\n")
print(x$call)
cat("\n")
print(pdim)
cat("\nResiduals:\n")
print(sumres(x)) # was until rev. 1178: print(summary(unlist(residuals(x))))
cat("\nCoefficients:\n")
printCoefmat(x$CoefTable, digits = digits)
cat(paste("Total Sum of Squares: ", signif(x$tss, digits), "\n", sep=""))
cat(paste("Residual Sum of Squares: ", signif(x$ssr, digits), "\n", sep=""))
cat(paste("Multiple R-squared: ", signif(x$rsqr, digits), "\n", sep=""))
invisible(x)
}
#' @rdname pmg
#' @export
residuals.pmg <- function(object, ...) {
return(pres(object))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.