Nothing
`simper` <-
function(comm, group, permutations = 0, trace = FALSE,
parallel = getOption("mc.cores"), ...)
{
EPS <- sqrt(.Machine$double.eps)
if (any(rowSums(comm, na.rm = TRUE) == 0))
warning("you have empty rows: results may be meaningless")
pfun <- function(x, comm, comp, i, contrp) {
groupp <- group[perm[x,]]
ga <- comm[groupp == comp[i, 1], , drop = FALSE]
gb <- comm[groupp == comp[i, 2], , drop = FALSE]
n.a <- nrow(ga)
n.b <- nrow(gb)
for(j in seq_len(n.b)) {
for(k in seq_len(n.a)) {
mdp <- abs(ga[k, , drop = FALSE] - gb[j, , drop = FALSE])
mep <- ga[k, , drop = FALSE] + gb[j, , drop = FALSE]
contrp[(j-1)*n.a+k, ] <- mdp / sum(mep)
}
}
colMeans(contrp)
}
comm <- as.matrix(comm)
comp <- t(combn(unique(as.character(group)), 2))
outlist <- NULL
## data parameters
P <- ncol(comm)
nobs <- nrow(comm)
## Make permutation matrix
perm <- getPermuteMatrix(permutations, nobs, ...)
## check dims (especially if permutations was a matrix)
if (ncol(perm) != nobs)
stop(gettextf("'permutations' have %d columns, but data have %d rows",
ncol(perm), nobs))
## OK: take number of permutations
nperm <- nrow(perm)
if (nperm > 0)
perm.contr <- matrix(nrow=P, ncol=nperm)
## Parallel processing ?
if (is.null(parallel))
parallel <- 1
hasClus <- inherits(parallel, "cluster")
isParal <- hasClus || parallel > 1
isMulticore <- .Platform$OS.type == "unix" && !hasClus
if (isParal && !isMulticore && !hasClus) {
parallel <- makeCluster(parallel)
}
for (i in seq_len(nrow(comp))) {
group.a <- comm[group == comp[i, 1], , drop = FALSE]
group.b <- comm[group == comp[i, 2], , drop = FALSE]
n.a <- nrow(group.a)
n.b <- nrow(group.b)
contr <- matrix(ncol = P, nrow = n.a * n.b)
for (j in seq_len(n.b)) {
for (k in seq_len(n.a)) {
md <- abs(group.a[k, , drop = FALSE] - group.b[j, , drop = FALSE])
me <- group.a[k, , drop = FALSE] + group.b[j, , drop = FALSE]
contr[(j-1)*n.a+k, ] <- md / sum(me)
}
}
average <- colMeans(contr)
## Apply permutations
if(nperm > 0){
if (trace)
cat("Permuting", paste(comp[i,1], comp[i,2], sep = "_"), "\n")
contrp <- matrix(ncol = P, nrow = n.a * n.b)
if (isParal) {
if (isMulticore){
perm.contr <- mclapply(seq_len(nperm), function(d)
pfun(d, comm, comp, i, contrp), mc.cores = parallel)
perm.contr <- do.call(cbind, perm.contr)
} else {
perm.contr <- parSapply(parallel, seq_len(nperm), function(d)
pfun(d, comm, comp, i, contrp))
}
} else {
perm.contr <- sapply(1:nperm, function(d)
pfun(d, comm, comp, i, contrp))
}
p <- (rowSums(apply(perm.contr, 2, function(x) x >= average - EPS)) + 1) / (nperm + 1)
}
else {
p <- NULL
}
overall <- sum(average)
sdi <- apply(contr, 2, sd)
ratio <- average / sdi
ava <- colMeans(group.a)
avb <- colMeans(group.b)
ord <- order(average, decreasing = TRUE)
cusum <- cumsum(average[ord] / overall)
out <- list(species = colnames(comm), average = average,
overall = overall, sd = sdi, ratio = ratio, ava = ava,
avb = avb, ord = ord, cusum = cusum, p = p)
outlist[[paste(comp[i,1], "_", comp[i,2], sep = "")]] <- out
}
## Close socket cluster if created here
if (isParal && !isMulticore && !hasClus)
stopCluster(parallel)
attr(outlist, "permutations") <- nperm
attr(outlist, "control") <- attr(perm, "control")
class(outlist) <- "simper"
outlist
}
`print.simper` <-
function(x, ...)
{
cat("cumulative contributions of most influential species:\n\n")
cusum <- lapply(x, function(z) z$cusum)
spec <- lapply(x, function(z) z$species[z$ord])
for (i in seq_along(cusum)) {
names(cusum[[i]]) <- spec[[i]]
}
## this probably fails with empty or identical groups that have 0/0 = NaN
out <- lapply(cusum, function(z) z[seq_len(min(which(z >= 0.7)))])
print(out)
invisible(x)
}
`summary.simper` <-
function(object, ordered = TRUE, digits = max(3, getOption("digits") - 3), ...)
{
if (ordered) {
out <- lapply(object, function(z)
data.frame(average = z$average, sd = z$sd, ratio = z$ratio,
ava = z$ava, avb = z$avb)[z$ord, ])
cusum <- lapply(object, function(z) z$cusum)
for(i in seq_along(out)) {
out[[i]]$cumsum <- cusum[[i]]
if(!is.null(object[[i]]$p)) {
out[[i]]$p <- object[[i]]$p[object[[i]]$ord]
}
}
}
else {
out <- lapply(object, function(z)
data.frame(cbind(contr = z$average, sd = z$sd, 'contr/sd' = z$ratio,
ava = z$ava, avb = z$avb, p = z$p)))
}
attr(out, "digits") <- digits
attr(out, "permutations") <- attr(object, "permutations")
attr(out, "control") <- attr(object, "control")
class(out) <- "summary.simper"
out
}
`print.summary.simper`<-
function(x, digits = attr(x, "digits"), ...)
{
signif.stars <- getOption("show.signif.stars") && attr(x, "permutations") > 0
starprint <- function(z) {
if (signif.stars && any(z$p < 0.1)) {
stars <- symnum(z$p, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " "))
z <- cbind(z, " " = format(stars))
}
z
}
out <- lapply(x, starprint)
for (nm in names(out)) {
cat("\nContrast:", nm, "\n\n")
print(out[[nm]], digits = digits, ...)
}
if (signif.stars && any(sapply(x, function(z) z$p) < 0.1)) {
leg <- attr(symnum(1, cutpoints = c(0, 0.001, 0.01, 0.05, 0.1, 1),
symbols = c("***", "**", "*", ".", " ")), "legend")
cat("---\nSignif. codes: ", leg, "\n")
}
if (!is.null(attr(x, "control")))
cat(howHead(attr(x, "control")))
invisible(x)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.