Nothing
.TailProb <- function(Chain, Threshold) {
if (Threshold > 0) {
Prob <- matrixStats::colMeans2(abs(Chain) > Threshold)
}
else {
Prob_aux <- matrixStats::colMeans2(Chain > 0)
Prob <- 2 * pmax(Prob_aux, 1 - Prob_aux) - 1
}
return(Prob)
}
.EFDR <- function(EviThreshold, Prob) {
return(sum((1 - Prob) * I(Prob > EviThreshold)) / sum(I(Prob > EviThreshold)))
}
.EFNR <- function(EviThreshold, Prob) {
return(sum(Prob * I(EviThreshold >= Prob)) / sum(I(EviThreshold >= Prob)))
}
.ThresholdSearch <- function(Probs, ProbThreshold, EFDR, Task, Suffix = NULL) {
# Summary of cases
# 1. If EFDR is provided - run calibration
# 1.1. If the calibration doesn't completely fail - search prob
# 1.1.1. If optimal prob is not too low - set prob to optimal
# 1.1.2. If optimal prob is too low - fix to input ProbThreshold
# 1.2 If calibration completely fails - default prob to 0.9 (conservative)
# 2. If EFDR is not provided - fix to input ProbThreshold
if(!is.null(EFDR)) {
# 1. If EFDR is provided - run calibration
ProbThresholds <- seq(0.5, 0.9995, by = 0.00025)
## Evaluate EFDR/EFNR for a grid of thresholds
EFDRgrid <- vapply(
ProbThresholds,
FUN = .EFDR,
FUN.VALUE = 1,
Prob = Probs
)
EFNRgrid <- vapply(
ProbThresholds,
FUN = .EFNR,
FUN.VALUE = 1,
Prob = Probs
)
AbsDiff <- abs(EFDRgrid - EFDR)
# 1.2 If calibration completely fails - default prob to 0.9 (conservative)
if (sum(!is.na(AbsDiff)) == 0) {
message(
"EFDR calibration failed for ", Task, " task. \n",
"Probability threshold automatically set equal to 'ProbThreshold", Suffix, "'."
)
OptThreshold <- c(ProbThreshold, NA, NA)
return(
list(
OptThreshold = OptThreshold,
EFDRgrid = EFDRgrid,
EFNRgrid = EFNRgrid
)
)
}
# 1.1. If the calibration doesn't completely fail
# Search EFDR closest to the desired value
EFDRopt <- EFDRgrid[AbsDiff == min(AbsDiff , na.rm = TRUE) &
!is.na(AbsDiff)]
# If multiple threholds lead to same EFDR, choose the one with lowest EFNR
EFNRopt <- EFNRgrid[EFDRgrid == mean(EFDRopt) & !is.na(EFDRgrid)]
if (sum(!is.na(EFNRopt)) > 0) {
optimal <- which(EFDRgrid == mean(EFDRopt) & EFNRgrid == mean(EFNRopt))
} else {
optimal <- which(EFDRgrid == mean(EFDRopt))
}
# Quick fix for EFDR/EFNR ties; possibly not an issue in real datasets
optimal <- median(round(median(optimal)))
if (ProbThresholds[optimal] >= ProbThreshold) {
# 1.1.1. If optimal prob is not too low - set prob to optimal
OptThreshold <- c(ProbThresholds[optimal],
EFDRgrid[optimal],
EFNRgrid[optimal])
if (abs(OptThreshold[2] - EFDR) > 0.025) {
message("For ", Task, " task:\n",
"It is not possible to find a probability threshold (>0.5) \n",
"that achieves the desired EFDR level (+-0.025). \n",
"The output below reflects the closest possible value. \n")
}
} else {
# 1.1.2. If optimal prob is too low - fix to input probs
EFDRgrid_2 <- .EFDR(ProbThreshold, Probs)
EFNRgrid_2 <- .EFNR(ProbThreshold, Probs)
OptThreshold <- c(ProbThreshold, EFDRgrid_2, EFNRgrid_2)
message(
"For ", Task, " task:\n",
"the posterior probability threshold chosen via EFDR calibration",
"is too low. Probability threshold automatically set equal to",
"'ProbThreshold", Suffix, "'.")
}
} else {
# 2. If EFDR is not provided - fix to given ProbThreshold
EFDRgrid <- .EFDR(ProbThreshold, Probs)
EFNRgrid <- .EFNR(ProbThreshold, Probs)
OptThreshold <- c(ProbThreshold, EFDRgrid[1], EFNRgrid[1])
ProbThresholds <- ProbThreshold
message(
"EFDR = NULL for", Task, " task:\n",
"Probability threshold automatically set equal to",
"'ProbThreshold", Suffix, "'.")
}
# return results
list(
OptThreshold = OptThreshold,
EFDRgrid = EFDRgrid,
EFNRgrid = EFNRgrid,
ProbThresholds = ProbThresholds
)
}
.TestDifferential <- function(
Chain,
Param1,
Param2,
n1,
n2,
GenesSelect,
GroupLabel1,
GroupLabel2,
Prob,
OptThreshold,
GeneName,
Measure,
GoodESS,
Excluded = NULL
) {
Median <- matrixStats::colMedians(Chain)
Base <- (Param1 * n1 + Param2 * n2) / (n1 + n2)
Result <- .TestResults(
Prob = Prob,
Threshold = OptThreshold[[1]],
Estimate = Median,
Label1 = GroupLabel1,
Label2 = GroupLabel2,
GenesSelect = GenesSelect,
GoodESS = GoodESS,
Excluded = Excluded
)
# Output table
Table <- cbind.data.frame(
GeneName = GeneName,
MEASUREOverall = as.numeric(Base),
MEASURE1 = Param1,
MEASURE2 = Param2,
MEASUREFC = as.numeric(2 ^ Median),
MEASUREDISTANCE = as.numeric(Median),
ProbDiffMEASURE = as.numeric(Prob),
ResultDiffMEASURE = Result,
stringsAsFactors = FALSE
)
if (Measure == "epsilon") {
Table$MeasureFC <- NULL
}
colnames(Table) <- gsub("MEASURE", Measure, colnames(Table))
colnames(Table) <- gsub("DISTANCE", .DistanceVar(Measure), colnames(Table))
# Rounding to 3 decimal points
IndNumeric <- vapply(Table, is.numeric, logical(1))
Table[, IndNumeric] <- round(Table[, IndNumeric], digits = 3)
Table
}
.TestResults <- function(Prob,
Threshold,
Estimate,
Label1,
Label2,
GenesSelect,
GoodESS,
Excluded = NULL) {
# Which genes are + in each group
Plus1 <- which(Prob > Threshold & Estimate > 0)
Plus2 <- which(Prob > Threshold & Estimate < 0)
Result <- rep("NoDiff", length(Estimate))
Result[Plus1] <- paste0(Label1, "+")
Result[Plus2] <- paste0(Label2, "+")
if (!is.null(Excluded)) {
Result[Excluded] <- "ExcludedFromTesting"
}
Result[!GenesSelect] <- "ExcludedByUser"
Result[!GoodESS] <- "ExcludedLowESS"
return(Result)
}
.RunTest <- function(Chain,
Epsilon,
ProbThreshold,
EFDR,
Task,
Suffix,
GroupLabel1,
GroupLabel2,
GenesSelect,
Param1,
Param2,
n1,
n2,
GeneName,
Measure,
GoodESS,
Excluded = NULL) {
Median <- matrixStats::colMedians(Chain)
Prob <- .TailProb(Chain = Chain, Threshold = Epsilon)
if (!is.null(Excluded)) {
select <- GenesSelect & GoodESS & !Excluded
} else {
select <- GenesSelect & GoodESS
}
Aux <- .ThresholdSearch(
Probs = Prob[select],
ProbThreshold = ProbThreshold,
EFDR = EFDR,
Task = Task,
Suffix = Suffix
)
OptThreshold <- Aux$OptThreshold
Table <- .TestDifferential(
Chain = Chain,
Param1 = Param1,
Param2 = Param2,
n1 = n1,
n2 = n2,
GenesSelect = GenesSelect,
GroupLabel1 = GroupLabel1,
GroupLabel2 = GroupLabel2,
Prob = Prob,
OptThreshold = OptThreshold,
GeneName = GeneName,
Measure = Measure,
GoodESS = GoodESS,
Excluded = Excluded
)
new(
"BASiCS_ResultDE",
Table = Table,
Name = Measure,
GroupLabel1 = GroupLabel1,
GroupLabel2 = GroupLabel2,
ProbThreshold = Aux$OptThreshold[[1]],
EFDR = Aux$OptThreshold[[2]],
EFNR = Aux$OptThreshold[[3]],
EFDRgrid = Aux$EFDRgrid,
EFNRgrid = Aux$EFNRgrid,
Epsilon = Epsilon
)
}
.CheckESS <- function(Chain1, Chain2, MinESS, parameter, q) {
if (!is.na(MinESS)) {
ess1 <- .GetMeasure(
Chain = Chain1,
Parameter = parameter,
Measure = "ess",
na.rm = FALSE
)
ess2 <- .GetMeasure(
Chain = Chain2,
Parameter = parameter,
Measure = "ess",
na.rm = FALSE
)
ess1 > MinESS & ess2 > MinESS
} else {
rep(TRUE, q)
}
}
.CheckProbEFDR <- function(ProbThreshold, EFDR, Suffix = NULL) {
if (!is.null(ProbThreshold)) {
if (ProbThreshold < 0 | ProbThreshold > 1 | !is.finite(ProbThreshold)) {
stop(paste0("'ProbThreshold", Suffix, "' must be contained in (0,1) \n"))
}
}
if (!is.null(EFDR)) {
if(EFDR < 0 | EFDR > 1 | !is.finite(EFDR)) {
if(!is.null(Suffix))
stop(paste0("'EFDR_", Suffix, "' must be contained in (0,1) \n"))
else
stop(paste0("'EFDR' must be contained in (0,1) \n"))
}
}
if(is.null(EFDR) & is.null(ProbThreshold)) {
if(!is.null(Suffix))
stop(paste0("A value for 'EFDR_", Suffix, "' or 'ProbThreshold", Suffix,
"' must be provided \n"))
else
stop(paste0("A value for 'EFDR' or 'ProbThreshold' must be provided \n"))
}
}
HiddenCheckThresholds <- function(Epsilon, ProbThreshold, EFDR, Suffix) {
if (Epsilon < 0 | !is.finite(Epsilon)) {
stop(paste0("'Epsilon", Suffix, "' must be a positive real value"))
}
if (!is.null(ProbThreshold)) {
if (ProbThreshold < 0 | ProbThreshold > 1 | !is.finite(ProbThreshold)) {
stop(paste0("'ProbThreshold", Suffix, "' must be contained in (0,1) \n"))
}
}
if (!is.null(EFDR)) {
if(EFDR < 0 | EFDR > 1 | !is.finite(EFDR)) {
stop(paste0("'EFDR_", Suffix, "' must be contained in (0,1) \n"))
}
}
if(is.null(EFDR) & is.null(ProbThreshold)) {
stop(paste0("A value for 'EFDR_", Suffix, "' or 'ProbThreshold", Suffix,
"' must be provided \n"))
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.