Nothing
#! /usr/bin/env Rscript
library(devtools)
#library(Rcpp)
library(tibble)
library(magrittr)
setwd("/dcs01/chaklab/chaklab1/users/mchou")
load_all("CNPBayes_trios")
setwd("/dcs01/chaklab/chaklab1/users/mchou/batchrun2")
ab <- commandArgs(trailingOnly=TRUE) %>%
as.integer
params.all <- readRDS(file.path("./params_del", paste0("params_", ab, ".rds")))
seeds <- readRDS(file.path("./params_del", "params_seeds.rds"))
seed <- seeds[ab]
set.seed(seed)
##--------------------------------------------------
##
message("cnpbayes_trios")
##
##--------------------------------------------------
# note maplabel and hp defined manually here for now
maplabel <- c(0,1,2)
hp <- HyperparametersTrios(k = 3)
N <- params.all[1,4]
params <- params.all[,1:3]
N<-1000
# sim truth
nbatch <- 1
mprob <- mprob.matrix(tau=c(0.5, 0.5, 0.5), maplabel, error=0.001)
truth <- simulate_data_multi2(params, N=N,
batches = rep(c(1:nbatch),
length.out = 3*N),
error=0.001, mprob, maplabel)
is_offspring <- truth$data$family_member=="o"
cn_offspring <- truth$data$copy_number[is_offspring]
if (length(table(cn_offspring))!=hp@k) {
truth <- simulate_data_multi2(params, N=N,
batches = rep(c(1:nbatch),
length.out = 3*N),
error=0.001, mprob, maplabel)
}
# module for turning off ParamUpdates
#up <- rep(1L, 10)
#names(up) <- c("theta", "sigma2",
# "pi", "mu",
# "tau2",
# "nu.0",
# "sigma2.0",
# "z.parents",
# "z.offspring",
# "pi.parents")
#up["z.parents"] <- 0L
#up["z.offspring"] <- 1L
#initialise model and mp
#mp <- McmcParams(iter=4000, burnin=2000, thin=3, param_updates=up)
#mp <- McmcParams(iter=4000, burnin=2000, thin=1)
mp <- McmcParams(iter=3000, burnin=2000, thin=1)
#model <- TBM(triodata=truth$data,
# hp=hp,
# mp=mp,
# mprob=mprob,
# maplabel=maplabel)
for(i in 1:500){
set.seed(123456)
mp <- McmcParams(iter=1, burnin=i)
model <- gibbs_trios(model="TBM", dat=as.tibble(truth$data),
batches=truth$data$batches,
mp=mp, k_range=c(3, 3), max_burnin=8000)[[1]]
setwd("/dcs01/chaklab/chaklab1/users/mchou/batchrun2/results")
saveRDS(model, file=paste0("throwaway_model.",ab,".rds"))
}
#mp2 <- McmcParams(iter=4000, burnin=2000, thin=1)
mb2 <- gibbs(model="MB", dat=truth$data$log_ratio,
batches=truth$data$batches,
mp=mp, k_range=c(3, 3), max_burnin=8000)
#mcmcParams(model) <- mp
#model <- posteriorSimulation(model)
snr <- snr.calc(model[[1]])
# this is for the trio model
results <- z2cn(model[[1]], maplabel)
is_offspring <- model[[1]]@triodata$family_member=="o"
cn.truth <- truth$data$copy_number
cn.truth.parent <- cn.truth[!is_offspring]
cn.truth.child <- cn.truth[is_offspring]
results.parent <- results@z[!is_offspring]
results.child <- results@z[is_offspring]
#cn.truth.parent2 <- as.factor(cn.truth.parent)
#cn.truth.child2 <- as.factor(cn.truth.child)
#results.parent2 <- as.factor(results.parent)
#results.child2 <- as.factor(results.child)
#cn.compare.parent <- table(results.parent2, cn.truth.parent2)
#cn.compare.child <- table(results.child2, cn.truth.child2)
prop.true.overall <- sum(cn.truth == results@z) / length(cn.truth)
prop.true.parent <- sum(cn.truth.parent == results.parent) / length(cn.truth.parent)
prop.true.child <- sum(cn.truth.child == results.child) / length(cn.truth.child)
# these lines manually modified based on maplabel(del/dup)
#sens.spec.par <- modified.sens.spec.calc(cn.compare.parent,cn.type="DEL")
#sens.par <- sens.spec.par$sensitivity
#spec.par <- sens.spec.par$specificity
#sens.spec.chd <- modified.sens.spec.calc(cn.compare.child,cn.type="DEL")
#sens.chd <- sens.spec.chd$sensitivity
#spec.chd <- sens.spec.chd$specificity
# this is for the MB model comparison
results.mb <- z2cn(mb2[[1]], maplabel)
#cn.truth2 <- as.factor(cn.truth)
#results.mb2 <- as.factor(results.mb@z)
#cn.compare.overall.mb <- table(results.mb2, cn.truth2)
prop.true.overall.mb <- sum(cn.truth == results.mb@z) / length(cn.truth)
#sens.spec.mb <- modified.sens.spec.calc(cn.compare.overall.mb,cn.type="DEL")
#sens.mb <- sens.spec.mb$sensitivity
#spec.mb <- sens.spec.mb$specificity
true.stats <- component_stats(truth$data)
truth.child.pi <- table(cn.truth.child)/length(cn.truth.child)
child.pi <- table(results.child)/length(results.child)
# input all the info
summaryResults <- list(params = params.all,
SimTruth = true.stats,
SimChildPi = truth.child.pi,
TrioCNcall = results@z,
MBCNcall = results.mb@z,
SNR = snr, Accuracy = prop.true.overall,
AccuracyParents = prop.true.parent,
AccuracyChild = prop.true.child,
AccuracyMB = prop.true.overall.mb,
ModelPi = model[[1]]@pi,
ModelChildPi = child.pi,
ModelTheta = model[[1]]@theta,
ModelSigma2 = model[[1]]@sigma2
)
#epi.table <- cbind(SNR, accur.overall, accur.par, accur.child, accur.overall.mb)
#epi.table <- cbind(SNR, accur.overall, accur.par, accur.child, sens.parent, spec.parent, sens.child, spec.child, accur.overall.mb, sens.overall.mb, spec.overall.mb)
#names(epi.table) <- c("SNR", "ParentAccuracy", "ChildAccuracy", "ParSens", "ParSpec", "ChdSens", "ChdSpec")
#truth.params.df <- data.frame(truth.params.matrix)
#params.df <- data.frame(params.matrix)
#epi.table.df <- data.frame(epi.table)
#colnames(epi.table.df) <- c("SNR", "OverallAccuracy", "ParentAccuracy", "ChildAccuracy", "MBOverallAccuracy")
#colnames(epi.table.df) <- c("SNR", "OverallAccuracy", "ParentAccuracy", "ChildAccuracy", "ParSens", "ParSpec", "ChdSens", "ChdSpec", "MBOverallAccuracy", "MBSens", "MBSpec")
#summary.results <- vector("list", 3)
#summary.results[[1]] <- truth.params.df
#summary.results[[2]] <- params.df
#summary.results[[3]] <- epi.table.df
## save to some output directory
pathout <- file.path("/dcs01/chaklab/chaklab1/users/mchou/batchrun2/results")
#pathout <- file.path("~/Desktop/Chakravarti_Lab/git")
results.out <- paste0("params_", ab, ".txt")
#saveRDS(summary.results, file=file.path(pathout, params.rds))
setwd("/dcs01/chaklab/chaklab1/users/mchou/batchrun2/results")
write.table(as.data.frame(summaryResults),file=file.path(pathout, results.out), quote=F,sep="\t",row.names=F)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.