R/MAPcode.R

Defines functions cb_makeContinTable makeContinTable cb_sigBands cb_contingency cb_buildContinTable expCounts cb_buildInciMat cb_childAnnList cb_children ann_list_to_mat MAPAmat makeChrBandGSC makeChrBandInciMat addChrBandAnnotation makeChrBandGraph cb_parse_band_Hs makeChrMapToEntrez annBaseName cleanRanges_Mm cleanRanges_Hs cleanRanges cleanMapWeird_Hs cleanMapWeird cleanMapAndsOrs_Hs cleanMapAndsOrs checkChrOrg

Documented in cb_children cb_contingency cb_parse_band_Hs cb_sigBands makeChrBandGraph makeChrBandGSC makeChrBandInciMat MAPAmat

checkChrOrg <- function(org) {
    supportedChrOrgs <- c("ORGANISM:Homo sapiens", "ORGANISM:Mus musculus")
    if (!(org %in% supportedChrOrgs)) {
        msg <- paste(sprintf("'%s' is not a supported.\n", org),
                     "organism must be one of:",
                     paste(supportedChrOrgs, collapse=", "))
        stop(msg, call.=FALSE)
    }
}

probes2MAP <- function (pids, data = "hgu133plus2") {
    pEnv = getAnnMap("MAP", chip=data)
    inMAP = mget(pids, pEnv, ifnotfound = NA)
    inMAP[!is.na(inMAP)]
}
### ------------------------------------------------------------------
cleanMapAndsOrs <- function(e2m, org) {
    checkChrOrg(org)
    func <- switch(org,
       "ORGANISM:Homo sapiens"= cleanMapAndsOrs_Hs,
       "ORGANISM:Mus musculus"= function(x) x)
    func(e2m)
}
cleanMapAndsOrs_Hs <- function(e2m) {
    ## The map data is a bit odd and we get things like: "Xq28 and Yq12"
    ## and "Xp22.3 or Yp11.3".  This function maps these to a proper
    ## vector of length 2.
    for (eg in ls(e2m)) {
        e2m[[eg]] <- unlist(strsplit(e2m[[eg, exact=TRUE]], " and | or "))
    }
    e2m
}


cleanMapWeird <- function(e2m, org) {
    checkChrOrg(org)
    func <- switch(org,
       "ORGANISM:Homo sapiens"= cleanMapWeird_Hs,
       "ORGANISM:Mus musculus"= function(x) x)
    func(e2m)
}
cleanMapWeird_Hs <- function(e2m) {
    ## Current MAP annotation data contains weird entries like:
    ##     "1 69.9 cM"
    ##     "1 E4"
    ##     "11 29.0 cM"
    ##     "11 B1.3"
    ##     "19 23.0 cM"
    ##     "19 C1"
    ##     "1q23.1 according to Sierra (Genomics 79, 177, 2002) [AFS]"
    ##     "2 A1"
    ##
    ## This function removes these for now.  The strategy is simply to
    ## look for annotations with spaces and drop them.
    for (eg in ls(e2m)) {
        val <- e2m[[eg, exact=TRUE]]
        badIdx <- grep(" ", val)
        if (length(badIdx) > 0) {
            good <- val[-badIdx]
            if (length(good) == 0)
              good <- as.character(NA)
        } else {
            good <- val
        }
        e2m[[eg]] <- good
    }
    e2m
}

cleanRanges <- function(e2m, org) {
    checkChrOrg(org)
    func <- switch(org,
       "ORGANISM:Homo sapiens"= cleanRanges_Hs,
       "ORGANISM:Mus musculus"= cleanRanges_Mm)
    func(e2m)
}

cleanRanges_Hs<- function(e2m) {
    ## We use (p|q) even though it will match nonsense annotations like
    ## "6p23-q24".  These seem to appear in the data.  But it is OK
    ## since we are taking the longest common suffix and that will just
    ## be the chromosome in these cases.
    rangePat <- "[0-9XY]+(q|p)([0-9.]+|ter)-(q|p)([0-9.]+|ter)"
        cenPat <- "cen"
        for (eg in ls(e2m)) {
            e2m[[eg]] <- sapply(e2m[[eg, exact=TRUE]], function(z) {
                if (length(grep("-", z, fixed=TRUE))) {
                    if (length(grep(rangePat, z, perl=TRUE))) {
                        arm.loc <- gregexpr("(q|p|-)", z)[[1L]]
                        lhs <- substr(z, 1L, arm.loc[2L]-1L)
                        rhs <- paste(substr(z, 1L, arm.loc[1L]-1L),
                                     substr(z, arm.loc[2L]+1L, nchar(z)), sep="")
                        ans <- lcPrefixC(c(lhs, rhs))
                        nc <- nchar(ans)
                        if (substr(ans, nc, nc) == ".")
                          ans <- substr(ans, 1L, nc - 1L)
                        ans
                    } else if (length(grep(cenPat, z, perl=TRUE))) {
                        ## FIXME:
                        ## for range including centromere, we just
                        ## take the entire chromosome.
                        ## Could we do better and include arm info?
                        substr(z, 1L, regexpr("cen|q|p", z) - 1L)
                    } else {
                        parts <- strsplit(z, "-", fixed=TRUE)[[1]]
                        ans <- lcPrefix(parts)
                        if (nchar(ans) < 1)
                          ans <- substr(z, 1L, regexpr("cen|q|p", z) - 1L)
                        warning("unexpected band notation: ", z, " using ", ans,
                                call.=FALSE)
                        ans
                    }
                } else {
                    z
                }
            })
        }
        e2m
}

cleanRanges_Mm<- function(e2m) {
    ## We use (p|q) even though it will match nonsense annotations like
    ## "6p23-q24".  These seem to appear in the data.  But it is OK
    ## since we are taking the longest common suffix and that will just
    ## be the chromosome in these cases.
    cmPat <- "[[:space:]].*cM$"
    cenPat <- "[[:space:]]centromere$"
    rangePat <- "[0-9XY]+[[:space:]][A-Z]+(-|/)[A-Z]+"
    for (eg in ls(e2m)) {
        e2m[[eg]] <- sapply(e2m[[eg, exact=TRUE]], function(z) {
            if (length(grep(rangePat, z, fixed=TRUE))) {
                arm.loc <- gregexpr("(q|p|-)", z)[[1L]]
            }else  if (length(grep(cenPat, z, perl=TRUE))){
                substr(z, 1L, regexpr(cenPat, z) - 1L)
            } else if (length(grep(cmPat, z, perl=TRUE))){
                substr(z, 1L, regexpr(cmPat, z) - 1L)
            }
            else {
                z
            }
        })
    }
    e2m
}

annBaseName <- function(p) {
    baseName <- p@datPkg@baseName
}

makeChrMapToEntrez <- function(datPkg, univ) {
    
    .getMap <- function(map)
      getAnnMap(map=map, chip=datPkg@name)
    probe2chr <- .getMap(map="MAP")
    org <- getOrganism(datPkg@name)

    if (!is.environment(probe2chr))
      probe2chr <- list2env(as.list(probe2chr))

    egs <- unique(unlist(mget(ls(probe2chr), ID2EntrezID(datPkg))))
    egs <- egs[!is.na(egs)]
    if (!is.null(univ))
      egs <- intersect(egs, univ)
    egs <- as.character(egs)
    eg2chr <- new.env(parent=emptyenv(), hash=TRUE,
                      size=as.integer(1.20 * length(egs)))
    ## XXX: need to define a revmap method for environments
    eg2p <- list2env(mget(egs, revmap(ID2EntrezID(datPkg))))
    for (eg in egs) {
        bands <- mget(eg2p[[eg, exact=TRUE]], probe2chr)
        bands <- bands[!is.na(bands)]
        if (length(bands))
          eg2chr[[eg]] <- unique(unlist(bands))
    }

    eg2chr <- cleanMapAndsOrs(eg2chr, org)
    eg2chr <- cleanMapWeird(eg2chr, org)
    eg2chr <- cleanRanges(eg2chr, org)

    m2eg <- reverseSplit(as.list(eg2chr))

    ## XXX: remove all annotations that remain that have '- or /'
    hasRange <- grep("-|/", names(m2eg))
    if (length(hasRange)) {
        warning("dropping ", length(hasRange), " items with weird range")
        m2eg <- m2eg[-hasRange]
    }
    onlyDot <- grep("^\\.$", names(m2eg))
    if (length(onlyDot))
      m2eg <- m2eg[-onlyDot]

    ## leave that way for the moment but could be cleaner
    if(org == "ORGANISM:Homo sapiens"){
        invalid <- grep("[^0-9.qpXYter]+", names(m2eg))
        if (length(invalid)) {
            warning("dropping invalid items: ",
                    paste(names(m2eg)[invalid], collapse=", "))
            m2eg <- m2eg[-invalid]
        }
    }
    m2eg
}


cb_parse_band_Hs <- function(x) {
    ## Given a chromosome band annotation (see examples below),
    ## return a vector giving the path from the root:
    ##
    ## 20p12.2 => 20, 20p, 20p1, 20p12, 20p12.2
    ##
    ## x1 <- "2q32"
    ## x2 <- "4q21.22"
    ## x3 <- "20p12.2"
    ## x4 <- "2qter"
    ##
    arm.pos <- regexpr("p|q", x)
    if (arm.pos < 0)
      return(x)
    chr <- substr(x, 1, arm.pos - 1)
    chrArm <- substr(x, 1, arm.pos)
    if (substr(x, arm.pos + 1, arm.pos + 3) == "ter")
      return(c(chr, chrArm, x))
    if (nchar(x) == nchar(chrArm))
      return(c(chr, chrArm))
    sbs <- strsplit(substr(x, arm.pos+1, nchar(x)), "")[[1]]
    bands <- character(length(sbs)+1)

    bands[1] <- chrArm
    i <- 1
    j <- 2
    prev <- bands[1]
    while (TRUE) {
        if (sbs[i] == ".") {
            prev <- paste(prev, ".", sep="")
            i <- i + 1
            next
        }
        bands[j] <- paste(prev, sbs[i], sep="")
        prev <- bands[j]
        i <- i + 1
        j <- j + 1
        if (i > length(sbs))
          break
    }
    if (i == j)                         # there was a '.'
      c(chr, bands[1:(i-1)])
    else
      c(chr, bands)
}


makeChrBandGraph <- function(chip, univ=NULL) {
    if(class(chip) == "character"){
        ##chip must be a datPkg (of correct type)
        chip = DatPkgFactory(chip)
    }
    
    org <- getOrganism(chip@name)
    checkChrOrg(org)

    parser <- switch(org,
       "ORGANISM:Homo sapiens"= cb_parse_band_Hs,
       "ORGANISM:Mus musculus"= cb_parse_band_Mm)

    m2p <- makeChrMapToEntrez(chip, univ)
    allMaps <- lapply(names(m2p), parser)
    vv <- lapply(allMaps, function(x) {
        L <- length(x)
        ## XXX: some will have L == 1, will induce NA's
        rbind(x[1:(L - 1)], x[2:L])
    })
    vvAll <- do.call(cbind, vv)
    vvStr <- paste(vvAll[1, ], vvAll[2, ], sep="+")
    ## remove duplicate edges
    dupIdx <- which(duplicated(vvStr))
    if (length(dupIdx) > 0 && any(dupIdx > 0))
      vvUniq <- vvAll[, -dupIdx]
    else
      vvUniq <- vvAll
    dimnames(vvUniq) <- list(c("from", "to"), NULL)
    vvT <- t(vvUniq)
    allNodes <- unique(unlist(allMaps))
    ## remove NA's
    NAitems <- which(is.na(vvT[, 2]))
    if (length(NAitems) > 0 && any(NAitems > 0))
      vvT <- vvT[-NAitems, ]
    ## remove self-loops
    selfLoops <- which(vvT[, 1] == vvT[, 2])
    if (length(selfLoops) > 0 && any(selfLoops > 0))
      vvT <- vvT[-selfLoops, ]
    ## add root node
    chrNames <- names(getAnnMap("CHRLENGTHS", chip@name))
    orgLinks <- cbind(rep(org, length(chrNames)), chrNames)
    vvT <- rbind(orgLinks, vvT)

    g <- ftM2graphNEL(vvT, edgemode="directed")
    g <- addChrBandAnnotation(g, m2p)
    g
}

addChrBandAnnotation <- function(g, m2p) {
    nodeDataDefaults(g, "geneIds") <- as.character(NA)
    bands <- rev(tsort(g)[-1])          # remove root node
    gEdges <- edges(g)
    for (n in bands) {
        ids <- m2p[[n, exact=TRUE]]
        kids <- gEdges[[n, exact=TRUE]]
        if (length(kids)) {
            ids <- unique(c(ids, unlist(nodeData(g, n=kids, "geneIds"))))
        }
        if (length(ids) > 0)
          nodeData(g, n, "geneIds") <- list(ids[!is.na(ids)])
    }
    g
}

makeChrBandInciMat <- function(chrGraph) {
    gnodes <- nodes(chrGraph)
    rootIdx <- grep("^ORGANISM", gnodes)
    v1 <- nodeData(chrGraph, n=gnodes[-rootIdx] , attr="geneIds")
    v1 <- v1[sapply(v1, function(z) !any(is.na(z)))]
    v1 <- lapply(v1, as.character)
    allGeneIDs <- unique(unlist(v1))
    nr <- length(v1)
    nc <- length(allGeneIDs)
    mat <- matrix(0L, nrow=nr, ncol=nc)
    dimnames(mat) <- list(names(v1), allGeneIDs)
    for (cb in names(v1)) {
        mat[cb, v1[[cb, exact=TRUE]]] <- 1L
    }
    mat
}

makeChrBandGSC <- function(chrGraph) {
  gnodes <- nodes(chrGraph)
  rootIdx <- grep("^ORGANISM", gnodes)
  v1 <- nodeData(chrGraph, n=gnodes[-rootIdx] , attr="geneIds")
  v1 <- v1[sapply(v1, function(z) !any(is.na(z)))]
  v1 <- lapply(v1, as.character)
  GeneSetCollection(mapply(GeneSet, v1, setIdentifier = names(v1),
                           setName = names(v1),
                           MoreArgs = list(geneIdType = EntrezIdentifier())))
}

MAPAmat <- function(chip, univ=NULL, minCount=0) {
    m <- makeChrBandInciMat(makeChrBandGraph(chip=chip, univ=univ))
    if (minCount > 0) {
        rs <- rowSums(m)
        m <- m[rs >= minCount, ]
    }
    m
}

ann_list_to_mat <- function(L) {
    gsets <- names(L)
    nr <- length(gsets)
    allgenes <- unique(unlist(L))
    nc <- length(allgenes)
    M <- matrix(0L, nrow=nr, ncol=nc,
                dimnames=list(gsets, allgenes))
    for (gs in gsets) {
        M[gs, L[[gs]]] <- 1L
    }
    M
}

cb_children <- function(n, chrGraph) {
    if (length(n) != 1)
      stop("arg 'n' must be a length one character vector")
    if (!(n %in% nodes(chrGraph)))
      return(character(0))
    edges(chrGraph)[[n, exact=TRUE]]
}

cb_childAnnList <- function(n, g) {
    ## n - node label, e.g., 12p1
    ## g - graph object representing the tree of chrom bands
    ##
    ## Returns a list named by children of n, values
    ## are vectors of gene IDs.  If n is not a node in
    ## g or has no children, return list()
    kids <- cb_children(n, g)
    if (length(kids))
      nodeData(g, n=kids, attr="geneIds")
    else
      list()
}

cb_buildInciMat <- function(n, g) {
    ## Return an incidence matrix for the gene sets
    ## (rows) specified by n in graph
    ## g.  The columns are the gene IDs
    dat <- nodeData(g, n=n, attr="geneIds")
    ann_list_to_mat(dat)
}

expCounts <- function(tab, wh.row=1L) {
    ## Expected counts for cells in wh.row of a
    ## contingency table
    ##
    ## Rule of thumb: E <= 5 implies ChiSq not reliable
    N <- sum(tab)
    rs <- sum(tab[wh.row, ])
    cs <- colSums(tab)
    (cs * rs) / N
}

## chiSqrSummands <- function(tab, wh.row=1L) {
##     ## this is just abs(residual)
##     E <- expCounts(tab, wh.row=wh.row)
##     sqrt((tab[wh.row, ] - E)^2 / E)
## }

cb_buildContinTable <- function(imat, selids, min.expected=1L, min.k=1L) {
    ## Return a 2 x k contingency table.  First row is selected,
    ## second is not.  Columns are gene sets (rows of imat).  Columns
    ## with expected count for selected row < min.expected are
    ## omitted.  Tables with fewer than min.k columns result in a
    ## return of integer(0).
    ##
    if (any(dim(imat) == 0))
      return(integer(0))
    if (nrow(imat) < min.k)
      return(integer(0))
    wh <- match(selids, colnames(imat), 0)
    submat <- imat[ , wh, drop=FALSE]
    if (ncol(submat)  == 0)
      return(integer(0))
    tot <- rowSums(imat)
    found <- rowSums(submat)
    tab <- t(cbind(found, tot - found))
    dimnames(tab) <- list(c("selected", "not"), rownames(imat))
    eCnt <- expCounts(tab)
    keep.cols <-
      if (!is.null(min.expected))
        eCnt > min.expected
      else
        as.logical(eCnt)
    tab <- tab[ , keep.cols, drop=FALSE]
    if (ncol(tab) > 0)
      tab
    else
      integer(0)
}

cb_contingency <- function(selids, chrVect, chrGraph, testFun=chisq.test,
                           min.expected=5L, min.k=1L) {
    ## filter unknown nodes
    chrVect <- chrVect[chrVect %in% nodes(chrGraph)]
    chrMat <- cb_buildInciMat(chrVect, chrGraph)
    conTab <- cb_buildContinTable(chrMat, selids,
                                  min.expected=min.expected, min.k=min.k)
    if (is.matrix(conTab) && nrow(conTab) > 1 && ncol(conTab) > 1)
        list(table=conTab, result=testFun(conTab))
    else
        list()
}


cb_sigBands <- function(b, p.value=0.01) {
    bands <- lapply(b, function(x) {
        if (x$result$p.value < p.value)
          colnames(x$table)
        else
          as.character(NA)
    })
    ans <- unlist(bands[!is.na(bands)])
    if (!length(ans))
      character(0)
    else
      ans
}

## ----

## This is another non-incidence matrix approach to
## generating the contingency tables.  Probably can
## junk this.
makeContinTable <- function(selids, ann_dat) {
    ## selids - vector of Gene IDs
    ## ann_dat - a list of vectors of Gene IDs; each
    ##           represents the IDs in a cateogry.
    ##           We assume the categories are close
    ##           to a partition of the genes.
    ##
    ## Returns a matrix with rows 'selected' and 'not' and a column for
    ## each element of ann_dat giving the counts for the contingency
    ## table.
    do.call(cbind, lapply(ann_dat, function(x) {
        found <- sum(selids %in% x)
        c(selected=found, not=(length(x) - found))
    }))
}
cb_makeContinTable <- function(n, g, selids) {
    dat <- cb_childAnnList(n, g)
    if (length(dat))
      makeContinTable(selids, dat)
    else
      dat
}

## ----

Try the Category package in your browser

Any scripts or data that you put into this service are public.

Category documentation built on Nov. 8, 2020, 10:58 p.m.