CIS_grubbs: Grubbs test for Common Insertion Sites (CIS).

Description Usage Arguments Details Value See Also Examples

View source: R/analysis-functions.R

Description

\lifecycle

experimental Statistical approach for the validation of common insertion sites significance based on the comparison of the integration frequency at the CIS gene with respect to other genes contained in the surrounding genomic regions. For more details please refer to this paper: https://ashpublications.org/blood/article/117/20/5332/21206/Lentiviral-vector-common-integration-sites-in

Usage

1
2
3
4
5
6
7
8
CIS_grubbs(
  x,
  genomic_annotation_file = system.file("extdata", "hg19.refGene.oracle.tsv.xz",
    package = "ISAnalytics"),
  grubbs_flanking_gene_bp = 1e+05,
  threshold_alpha = 0.05,
  add_standard_padjust = TRUE
)

Arguments

x

An integration matrix, must include the mandatory_IS_vars() columns and the annotation_IS_vars() columns

genomic_annotation_file

Database file for gene annotation, see details

grubbs_flanking_gene_bp

Number of base pairs flanking a gene

threshold_alpha

Significance threshold

add_standard_padjust

Compute the standard padjust?

Details

Genomic annotation file

This file is a data base, or more simply a .tsv file to import, with genes annotation for the specific genome. The annotations for the human genome (hg19) is already included in this package. If for any reason the user is performing an analysis on another genome, this file needs to be changed respecting the USCS Genome Browser format, meaning the input file headers should be:

1
2
3
4
## name2, chrom, strand 
##  min_txStart, max_txEnd, minmax_TxLen 
##  average_TxLen, name, min_cdsStart 
##  max_cdsEnd, minmax_CdsLen, average_CdsLen

Value

A data frame

See Also

Other Analysis functions: comparison_matrix(), compute_abundance(), cumulative_count_union(), sample_statistics(), separate_quant_matrices(), threshold_filter(), top_integrations()

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
op <- options(ISAnalytics.widgets = FALSE)

path_AF <- system.file("extdata", "ex_association_file.tsv",
    package = "ISAnalytics"
)
root_correct <- system.file("extdata", "fs.zip",
    package = "ISAnalytics"
)
root_correct <- unzip_file_system(root_correct, "fs")

matrices <- import_parallel_Vispa2Matrices_auto(
    association_file = path_AF, root = root_correct,
    quantification_type = c("seqCount", "fragmentEstimate"),
    matrix_type = "annotated", workers = 2, patterns = NULL,
    matching_opt = "ANY",
    dates_format = "dmy"
)

cis <- CIS_grubbs(matrices)

options(op)

ISAnalytics documentation built on April 9, 2021, 6:01 p.m.