Description Usage Arguments Details Value Examples
View source: R/plotting-functions.R
experimental Traces a volcano plot for IS frequency and CIS results.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | CIS_volcano_plot(
x,
onco_db_file = system.file("extdata", "201806_uniprot-Proto-oncogene.tsv.xz", package
= "ISAnalytics"),
tumor_suppressors_db_file = system.file("extdata",
"201806_uniprot-Tumor-suppressor.tsv.xz", package = "ISAnalytics"),
species = "human",
known_onco = known_clinical_oncogenes(),
suspicious_genes = clinical_relevant_suspicious_genes(),
significance_threshold = 0.05,
annotation_threshold_ontots = 0.1,
highlight_genes = NULL,
title_prefix = NULL,
return_df = FALSE
)
|
x |
Either a simple integration matrix or a data frame resulting
from the call to CIS_grubbs with |
onco_db_file |
Uniprot file for proto-oncogenes (see details) |
tumor_suppressors_db_file |
Uniprot file for tumor-suppressor genes |
species |
One between "human", "mouse" and "all" |
known_onco |
Data frame with known oncogenes. See details. |
suspicious_genes |
Data frame with clinical relevant suspicious genes. See details. |
significance_threshold |
The significance threshold |
annotation_threshold_ontots |
Value above which genes are annotated |
highlight_genes |
Either NULL or a character vector of genes to be highlighted in the plot even if they're not above the threshold |
title_prefix |
A string to be displayed in the title - usually the project name and other characterizing info |
return_df |
Return the data frame used to generate the plot? This can be useful if the user wants to manually modify the plot with ggplot2. If TRUE the function returns a list containing both the plot and the data frame. |
Users can supply as x
either a simple integration matrix or a
data frame resulting from the call to CIS_grubbs
with add_standard_padjust = TRUE
. In the first case an internal call to
the function CIS_grubbs
is performed.
These files are included in the package for user convenience and are
simply UniProt files with gene annotations for human and mouse.
For more details on how this files were generated use the help ?filename
function.
The default values are contained in a data frame exported by this package, it can be accessed by doing:
head(known_clinical_oncogenes())
1 2 3 4 5 6 7 8 | ## # A tibble: 5 x 2
## GeneName KnownClonalExpansion
## <chr> <lgl>
## 1 MECOM TRUE
## 2 CCND2 TRUE
## 3 TAL1 TRUE
## 4 LMO2 TRUE
## 5 HMGA2 TRUE
|
If the user wants to change this parameter the input data frame must
preserve the column structure. The same goes for the suspicious_genes
parameter (DOIReference column is optional):
head(clinical_relevant_suspicious_genes())
1 2 3 4 5 6 7 8 9 | ## # A tibble: 6 x 3
## GeneName ClinicalRelevance DOIReference
## <chr> <lgl> <chr>
## 1 DNMT3A TRUE https://doi.org/10.1182/blood-2018-01-829937
## 2 TET2 TRUE https://doi.org/10.1182/blood-2018-01-829937
## 3 ASXL1 TRUE https://doi.org/10.1182/blood-2018-01-829937
## 4 JAK2 TRUE https://doi.org/10.1182/blood-2018-01-829937
## 5 CBL TRUE https://doi.org/10.1182/blood-2018-01-829937
## 6 TP53 TRUE https://doi.org/10.1182/blood-2018-01-829937
|
A plot or a list containing a plot and a data frame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | op <- options(ISAnalytics.widgets = FALSE)
path_AF <- system.file("extdata", "ex_association_file.tsv",
package = "ISAnalytics"
)
root_correct <- system.file("extdata", "fs.zip",
package = "ISAnalytics"
)
root_correct <- unzip_file_system(root_correct, "fs")
matrices <- import_parallel_Vispa2Matrices_auto(
association_file = path_AF, root = root_correct,
quantification_type = c("seqCount", "fragmentEstimate"),
matrix_type = "annotated", workers = 2, patterns = NULL,
matching_opt = "ANY",
dates_format = "dmy"
)
cis <- CIS_grubbs(matrices)
plot <- CIS_volcano_plot(cis)
options(op)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.