Nothing
#The goal of this function is to calculate the LoD/LoQ of the data provided in the data frame.
#The function returns a new data frame containing the value of the LoD/LoQ
#' @export
#' @import minpack.lm
nonlinear_quantlim <- function(datain, alpha = 0.05, Npoints = 100, Nbootstrap = 2000){
switch(Sys.info()[['sysname']],
Windows = {null_output <- "NUL"},
Linux = {null_output <- "/dev/null"},
Darwin = {null_output <- "/dev/null"})
#Need to rename variables as needed:
names(datain)[names(datain) == 'CONCENTRATION'] <- 'C'
names(datain)[names(datain) == 'INTENSITY'] <- 'I'
#percentile of the prediction interval considered
if(missing(alpha)){
alpha <- 5/100;
}
if( alpha >= 1 | alpha <= 0){
print("incorrect specified value for alpha, 0 < alpha < 1")
return(NULL)
}
#Number of boostrap samples
if(missing(Nbootstrap)){
B <- 2000
} else B <- Nbootstrap
#Number of points for the discretization interval
if(missing(Npoints)){
Npoints <- 100
}
#Number of bootstrap samples for the prediction inteval for the changepoint
#Large values can make calculations very expensive
B1 <- 30
#Number of prediction samples to generate
BB <- 200
#Number of trials for convergence of every curvefit algorithm
NMAX <- 30
datain <- datain[!is.na(datain$I) & !is.na(datain$C),]
datain <- datain[!is.infinite(datain$I) & !is.infinite(datain$C),]
datain <- datain[order(datain$C),]
tmp_nob <- subset(datain,datain$C >0)
tmp_all <- datain
tmp_blank <-subset(datain,datain$C == 0)
#Calculate the value of the noise:
#Use the zero concentration to calculate the LOD:
noise = mean(tmp_blank$I)
var_noise = var(tmp_blank$I)
pb <- txtProgressBar(min = 0, max = 1, initial = 0, char = "%",
width = 40, title, label, style = 1, file = "")
n_blank = length(unique(tmp_blank$I))
if(nrow(tmp_blank) <= 1 || var_noise <= 0){
print("Not enough blank samples!!!")
return(NULL)
}
fac = qt(1-alpha,n_blank - 1)*sqrt(1+1/n_blank)
#upper bound of noise prediction interval
up_noise = noise + fac* sqrt(var_noise)
unique_c = sort(unique(tmp_all$C)); var_v <- rep(0.0, length(unique_c))
weights <- rep(0.0, length(tmp_all$C));
weights_nob <- rep(0.0, length(tmp_nob$C));
#Calculate variance for all concentrations keeping NA values:
ii = 1
for (j in unique_c){
data_f <- subset(tmp_all, C == j)
var_v[ii] <- var(data_f$I)
ii = ii +1
}
#Log scale discretization:
xaxis_orig_2 <- exp(c( seq( from = log(10+0), to = log(1+max(unique_c)), by = log(1+max(unique_c))/Npoints ))) -10 #0.250 to go fast here
xaxis_orig_2 <- unique(sort(c(xaxis_orig_2,unique_c)))
#Instead simply create a piecewise linear approximation:
var_v_lin = approx(unique_c[!is.na(var_v)], var_v[!is.na(var_v)], xout = xaxis_orig_2)$y
var_v_lin_unique = approx(unique_c[!is.na(var_v)], var_v[!is.na(var_v)], xout = unique_c)$y
##
#In the following, consider that the smoothed variance is that from the log:
var_v_s <- var_v_lin
var_v_s_unique <- var_v_lin_unique
var_v_s_log <- var_v_s
var_v_s_log_unique <- var_v_s_unique
##
if(1){# Full bootstrap
outB <- matrix(NA_real_, nrow=B, ncol=length(xaxis_orig_2))
outBB_pred <- matrix(NA_real_, nrow=B*BB, ncol=length(xaxis_orig_2))
change_B <- rep(NA, B)
set.seed(123)
for (j in 1:B){ #Number of first boostrap samples j
setTxtProgressBar(pb, j/B, title = NULL, label = NULL)
lin.blank_B <- NULL
tmpB <- tmp_all[sample(1:nrow(tmp_all), replace=TRUE),] #Pick ** observations with replacement among all that are available.
#Blank samples are included
weights = rep(0,length(tmpB$C) )
for (kk in 1:length(tmpB$C)){
weights[kk] = 1/var_v_s_unique[which( unique_c == tmpB$C[kk])]
}
noise_re = sample(tmp_blank$I,length(tmp_blank$I),replace=TRUE)
noise_B = mean(noise_re) #Mean of resampled noise (= mean of noise)
ii = 0
if(1) while(ii < NMAX){#Number of ii trials for bilinear fit < NMAX
ii = ii + 1
{
change = median(tmpB$C)*runif(1)*0.25
slope=median(tmpB$I)/median(tmpB$C)*runif(1)
sink(null_output);
#Set intercept at noise and solve for the slope and change
fit.blank_B <- NULL
fit.blank_B <- tryCatch({nlsLM( I ~ .bilinear_LOD(C , noise_B, slope, change),data=tmpB, trace = TRUE,start=c(slope=slope, change=change), weights = weights,
control = nls.lm.control(nprint=1,ftol = sqrt(.Machine$double.eps)/2, maxiter = 50))}, error = function(e) {NULL}
)
sink();
}
out_loop = 0
if(!is.null(fit.blank_B)){ #Converges but cannot have a real threshold here anyway
if( summary(fit.blank_B)$coefficient[2] < min(tmpB$C) ){
fit.blank_B <- NULL
out_loop =1
}
}
if(!is.null(fit.blank_B) && out_loop == 0){ #Boostrap again to see whether bilinear fit is real:
change_BB <- rep(NA,B1)
bb = 0
while(bb < B1){#Number of second boostrap samples bb < NMAX
bb = bb + 1
iii = 0
while(iii < NMAX){#Number of iii trials for convergence of bilinear
iii = iii + 1
tmpBB <- tmpB[sample(1:nrow(tmpB), replace=TRUE),]
change = median(tmpBB$C)*runif(1)*0.25
slope=median(tmpBB$I)/median(tmpBB$C)*runif(1)
weightsB = rep(0,length(tmpB$C) )
for (kk in 1:length(tmpBB$C)){
weightsB[kk] = 1/var_v_s_unique[which( unique_c == tmpBB$C[kk])]
}
#Need to also bootstrap for the value of the mean:
#Pick with replacement blank samples:
noise_re_re = sample(noise_re,length(noise_re),replace=TRUE)
noise_BB = mean(noise_re_re)
sink(null_output);
fit.blank_BB <- NULL
fit.blank_BB <- tryCatch({nlsLM( I ~ .bilinear_LOD(C , noise_BB, slope, change),data=tmpBB, trace = TRUE,start=c(slope=slope, change=change), weights = weightsB,
control = nls.lm.control(nprint=1,ftol = sqrt(.Machine$double.eps)/2, maxiter = 50))}, error = function(e) {NULL}
)
sink();
if(!is.null(fit.blank_BB)){
change_BB[bb] = summary(fit.blank_BB)$coefficient[2]
}else{
change_BB[bb] = NA
}
if(!is.null(fit.blank_BB)) break
} #Number of iii trials for convergence of bilinear
#if(sum(is.na(change_BB))>10 && mean(change_BB, na.rm = TRUE) < 0){ out_loop = 1; break; }
}#Number of second boostrap samples bb < B1
# #print(change_BB[order(change_BB)])
# CI_change <- quantile(change_BB,probs=c(0.1),na.rm= TRUE)
#
# #Ensure that the 95% confidence interval is included inside the concentration range:
# if(is.na(CI_change[1] && out_loop == 0) ){
# fit.blank_B <- NULL
# out_loop =1
# }
#
#
# if(!is.na(CI_change[1]) && out_loop == 0) if(CI_change[1] < min(tmp_all$C)){
# fit.blank_B <- NULL
# out_loop =1
# }else{
# #fit.blank_B <- NULL#print('Acceptable fit')
# }
#
CI_change <- quantile(change_BB,probs=c(0.05,1-0.05),na.rm= TRUE) #90% Confidence interval for the value of change
#Ensure that the 90% confidence interval is included inside the concentration range:
if(is.na(CI_change[1]) || is.na(CI_change[2])){
fit.blank_B <- NULL
out_loop =1
}
if(!is.na(CI_change[1]) && !is.na(CI_change[2])) if(CI_change[1] < min(tmp_all$C) | CI_change[2] > max(tmp_all$C)){
fit.blank_B <- NULL
out_loop =1
}else{
#fit.blank_B <- NULL#print('Acceptable fit')
}
} #Boostrap again to see whether bilinear fit is real
if(out_loop == 1) break #Bilinear fit converges but CI not acceptable
if(!is.null(fit.blank_B)) break #Could never find a converged bilinear fit
} #Number of ii trials for bilinear fit < NMAX
#fit.blank_B <- NULL
if(is.null(fit.blank_B)){ #Do linear fit:
ll = 0
while(ll < NMAX){
ll = ll + 1
slope = median(tmpB$I)/median(tmpB$C)*runif(1)
intercept = noise*runif(1)
sink(null_output);
lin.blank_B <- tryCatch({nlsLM( I ~ .linear(C , intercept, slope),data=tmpB, trace = TRUE,start=c(intercept=intercept, slope=slope), weights = weights,
control = nls.lm.control(nprint=1,ftol = sqrt(.Machine$double.eps)/2, maxiter = 50))}, error = function(e) {NULL}
)
sink();
if(!is.null(lin.blank_B)) break
}
} #Do linear fit if is.null(fit.blank_B)
#Store the curve fits obtained via bootstrap with bilinear and linear:
if (!is.null(fit.blank_B)){
outB[j,] <- .bilinear_LOD(xaxis_orig_2, noise_B, summary(fit.blank_B)$coefficient[1] , summary(fit.blank_B)$coefficient[2])
change_B[j] <- summary(fit.blank_B)$coefficient[2]
} else{
if(!is.null(lin.blank_B)){#If linear fit, change = 0 anyway
outB[j,] <- .linear(xaxis_orig_2,summary(lin.blank_B)$coefficient[1] , summary(lin.blank_B)$coefficient[2] )
change_B[j] <- 0
}
else{
outB[j,] <- rep(NA, length(xaxis_orig_2))
change_B[j] <- NA
}
}
for (jj in 1:BB){#Calculate predictions
outBB_pred[(j-1)*BB +jj,] <- outB[j,] + rnorm( length(xaxis_orig_2),0,sqrt(var_v_s_log))
}
} # Number of first bootstrap samples j <=B
#Calculate the variance of the fits:
var_bilinear <- apply(outB, 2, var,na.rm = TRUE)
mean_bilinear <- apply(outB, 2, mean,na.rm = TRUE)
mean_pred <- apply(outBB_pred, 2, mean,na.rm = TRUE)
var_pred <- apply(outBB_pred, 2, var,na.rm = TRUE)
lower_Q_pred = apply(outBB_pred, 2, quantile, probs=c(alpha) ,na.rm = TRUE)
upper_Q_pred = apply(outBB_pred, 2, quantile, probs=c(1 - alpha) ,na.rm = TRUE)
}#Full bootstrap method
LOD_pred_mean_low <- 0
LOD_pred_high <- 0
#Calculate the LOD/LOQ from the prediction interval:
i_before = which(diff(sign( up_noise - mean_bilinear)) != 0) #before sign change
if(length(i_before) > 0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred = LOD_pred_mean
y_LOD_pred = up_noise
} else{
LOD_pred = 0
y_LOD_pred = up_noise
}
#Calculate the LOD with the upper-upper and upper-lower limits of the noise (Calculated to make sure that we have a large enough resolution)
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_low = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_low = LOD_pred_mean_low
y_LOD_pred_low = up_noise
} else{
LOD_pred_low = 0
y_LOD_pred_low = up_noise
}
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_high = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_high = LOD_pred_mean_high
} else{
LOD_pred_mean_high = 0
}
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_low = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_low = LOD_pred_mean_low
y_LOD_pred_low = up_noise
} else{
LOD_pred_low = 0
y_LOD_pred_low = up_noise
}
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_high = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_high = LOD_pred_mean_high
} else{
LOD_pred_mean_high = 0
}
#Do a linear fit to find the intersection:
i_before = which(diff(sign(up_noise - lower_Q_pred))!=0)
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - lower_Q_pred)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - lower_Q_pred)[i_after]
x_inter = x1 - f1*(x2-x1)/(f2-f1)
LOQ_pred = x_inter
y_LOQ_pred = up_noise
} else{
LOQ_pred = 0
y_LOQ_pred = up_noise
}
if(length(LOD_pred) > 1){
print('multiple intersection between fit and upper bound of noise, picking first')
LOQ_pred=LOQ_pred[1]
}
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_low = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_low = LOD_pred_mean_low
y_LOD_pred_low = up_noise
} else{
LOD_pred_low = 0
y_LOD_pred_low = up_noise
}
i_before = which(diff(sign( up_noise - mean_bilinear ))!=0) #before sign change
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - mean_bilinear)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - mean_bilinear)[i_after]
#Linear interpollation to find where the function changes sign:
LOD_pred_mean_high = x1 - f1*(x2-x1)/(f2-f1)
LOD_pred_high = LOD_pred_mean_high
} else{
LOD_pred_mean_high = 0
}
#Do a linear fit to find the intersection:
i_before = which(diff(sign(up_noise - lower_Q_pred))!=0)
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - lower_Q_pred)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - lower_Q_pred)[i_after]
x_inter = x1 - f1*(x2-x1)/(f2-f1)
LOQ_pred_low = x_inter
} else{
LOQ_pred_low = 0
}
#Do a linear fit to find the intersection:
i_before = which(diff(sign(up_noise - lower_Q_pred))!=0)
if(length(i_before)>0){
i_after = i_before+1
x1 = xaxis_orig_2[i_before]; f1 = (up_noise - lower_Q_pred)[i_before]
x2 = xaxis_orig_2[i_after]; f2 = (up_noise - lower_Q_pred)[i_after]
x_inter = x1 - f1*(x2-x1)/(f2-f1)
LOQ_pred_high = x_inter
} else{
LOQ_pred_high = 0
}
#Calculate slope and intercept above the LOD/LOQ:
slope_lin <- NA
intercept_lin <- NA
data_linear <- datain[datain$C > LOQ_pred,]
ii = 0
while(ii < NMAX){#Number of ii trials for bilinear fit < NMAX
ii = ii + 1
{
intercept = data_linear$I[1]*runif(1)
slope=median(data_linear$I)/median(data_linear$C)*runif(1)
weights = rep(0,length(data_linear$C) )
for (kk in 1:length(data_linear$C)){
weights[kk] = 1/var_v_s[which( unique_c == data_linear$C[kk])]
}
sink(null_output);
fit.blank_lin <- NULL
fit.blank_lin <- tryCatch({nlsLM( I ~ .linear(C , intercept, slope),data=data_linear, trace = TRUE,start=c(slope=slope, intercept = intercept), weights = weights,
control = nls.lm.control(nprint=1,ftol = sqrt(.Machine$double.eps)/2, maxiter = 50))}, error = function(e) {NULL}
)
sink();
}
if(!is.null(fit.blank_lin)) break
}#ii < NMAX
if(!is.null(fit.blank_lin)){
slope_lin <- summary(fit.blank_lin)$coefficients[[1]]
intercept_lin <- summary(fit.blank_lin)$coefficients[[2]]
}
if(is.null(fit.blank_lin)) print("Linear assay characterization above LOD did not converge")
return(
data.frame(as.data.frame(list(CONCENTRATION = xaxis_orig_2,
MEAN=mean_bilinear,
LOW= lower_Q_pred,
UP = upper_Q_pred,
LOB= rep(LOD_pred, length(upper_Q_pred)),
LOD = rep(LOQ_pred, length(upper_Q_pred)),
SLOPE =slope_lin ,
INTERCEPT =intercept_lin,
NAME = rep(datain$NAME[1], length(upper_Q_pred)),
METHOD = rep("NONLINEAR", length(upper_Q_pred)))))
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.